Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 42701-42722, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087638

RESUMO

Three dimensional modulation-enhanced single-molecule localization techniques, such as ModLoc, offer advancements in axial localization precision across the entire field of view and axial capture range, by applying phase shifting to the illumination pattern. However, this improvement is limited by the pitch of the illumination pattern that can be used and requires registration between separate regions of the camera. To overcome these limitations, we present ZIMFLUX, a method that combines astigmatic point-spread-function (PSF) engineering with a structured illumination pattern in all three spatial dimensions. In order to achieve this we address challenges such as optical aberrations, refractive index mismatch, supercritical angle fluorescence (SAF), and imaging at varying depths within a sample, by implementing a vectorial PSF model. In scenarios involving refractive index mismatch between the sample and immersion medium, the astigmatic PSF loses its ellipticity at greater imaging depths, leading to a deterioration in axial localization precision. In contrast, our simulations demonstrate that ZIMFLUX maintains high axial localization precision even when imaging deeper into the sample. Experimental results show unbiased localization of 3D 80 nm DNA-origami nanostructures in SAF conditions with a 1.5-fold improvement in axial localization precision when comparing ZIMFLUX to conventional SMLM methods that rely solely on astigmatic PSF engineering.

2.
HardwareX ; 14: e00428, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275951

RESUMO

A low-cost glass-based microfluidic flow cell with a piezo actuator is built using off-the-shelf parts (total cost €9 per device) to apply acoustophoretic force on polystyrene micro-beads. The main challenge in the fabrication of these devices was to ensure their leak tightness, which we solved using double-sided tape and nail polish. Beads with 1.5 µm diameter flowing in a 100 µm deep channel were trapped at 7.5 MHz using a 23.7 peak-to-peak voltage (Vpp) sinusoidal input. The trap located at 50 ± 0.1 µm depth was measured to have a stiffness of approximately 0.6 pN/µm. With this simple device we can trap and control the axial position of micrometer scale objects, which allows for the manipulation of beads and cells. We intend to use the device for force spectroscopy on micro-bead tethered DNA. This can be combined with super-resolution imaging techniques to study mechanics and binding of protein structures along a DNA strand as a function of induced tension.

3.
Proc Natl Acad Sci U S A ; 120(23): e2122053120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252969

RESUMO

The causes and consequences of abnormal biogenesis of extracellular vesicles (EVs) are not yet well understood in malignancies, including in breast cancers (BCs). Given the hormonal signaling dependence of estrogen receptor-positive (ER+) BC, we hypothesized that 17ß-estradiol (estrogen) might influence EV production and microRNA (miRNA) loading. We report that physiological doses of 17ß-estradiol promote EV secretion specifically from ER+ BC cells via inhibition of miR-149-5p, hindering its regulatory activity on SP1, a transcription factor that regulates the EV biogenesis factor nSMase2. Additionally, miR-149-5p downregulation promotes hnRNPA1 expression, responsible for the loading of let-7's miRNAs into EVs. In multiple patient cohorts, we observed increased levels of let-7a-5p and let-7d-5p in EVs derived from the blood of premenopausal ER+ BC patients, and elevated EV levels in patients with high BMI, both conditions associated with higher levels of 17ß-estradiol. In brief, we identified a unique estrogen-driven mechanism by which ER+ BC cells eliminate tumor suppressor miRNAs in EVs, with effects on modulating tumor-associated macrophages in the microenvironment.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Estrogênios/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Microambiente Tumoral
4.
Nat Commun ; 14(1): 855, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869036

RESUMO

Individual cells and multicellular systems respond to cell-scale curvatures in their environments, guiding migration, orientation, and tissue formation. However, it remains largely unclear how cells collectively explore and pattern complex landscapes with curvature gradients across the Euclidean and non-Euclidean spectra. Here, we show that mathematically designed substrates with controlled curvature variations induce multicellular spatiotemporal organization of preosteoblasts. We quantify curvature-induced patterning and find that cells generally prefer regions with at least one negative principal curvature. However, we also show that the developing tissue can eventually cover unfavorably curved territories, can bridge large portions of the substrates, and is often characterized by collectively aligned stress fibers. We demonstrate that this is partly regulated by cellular contractility and extracellular matrix development, underscoring the mechanical nature of curvature guidance. Our findings offer a geometric perspective on cell-environment interactions that could be harnessed in tissue engineering and regenerative medicine applications.


Assuntos
Comunicação Celular , Osteócitos , Matriz Extracelular , Medicina Regenerativa , Fibras de Estresse
5.
Biomed Opt Express ; 13(6): 3275-3294, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781973

RESUMO

High-NA light sheet illumination can improve the resolution of single-molecule localization microscopy (SMLM) by reducing the background fluorescence. These approaches currently require custom-made sample holders or additional specialized objectives, which makes the sample mounting or the optical system complex and therefore reduces the usability of these approaches. Here, we developed a single-objective lens-inclined light sheet microscope (SOLEIL) that is capable of 2D and 3D SMLM in thick samples. SOLEIL combines oblique illumination with point spread function PSF engineering to enable dSTORM imaging in a wide variety of samples. SOLEIL is compatible with standard sample holders and off-the-shelve optics and standard high NA objectives. To accomplish optimal optical sectioning we show that there is an ideal oblique angle and sheet thickness. Furthermore, to show what optical sectioning delivers for SMLM we benchmark SOLEIL against widefield and HILO microscopy with several biological samples. SOLEIL delivers in 15 µm thick Caco2-BBE cells a 374% higher intensity to background ratio and a 54% improvement in the estimated CRLB compared to widefield illumination, and a 184% higher intensity to background ratio and a 20% improvement in the estimated CRLB compared to HILO illumination.

6.
Opt Express ; 29(24): 39920-39929, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809346

RESUMO

Single-photon avalanche diode (SPAD) arrays can be used for single-molecule localization microscopy (SMLM) because of their high frame rate and lack of readout noise. SPAD arrays have a binary frame output, which means photon arrivals should be described as a binomial process rather than a Poissonian process. Consequentially, the theoretical minimum uncertainty of the localizations is not accurately predicted by the Poissonian Cramér-Rao lower bound (CRLB). Here, we derive a binomial CRLB and benchmark it using simulated and experimental data. We show that if the expected photon count is larger than one for all pixels within one standard deviation of a Gaussian point spread function, the binomial CRLB gives a 46% higher theoretical uncertainty than the Poissonian CRLB. For typical SMLM photon fluxes, where no saturation occurs, the binomial CRLB predicts the same uncertainty as the Poissonian CRLB. Therefore, the binomial CRLB can be used to predict and benchmark localization uncertainty for SMLM with SPAD arrays for all practical emitter intensities.

7.
Opt Express ; 29(16): 25836-25847, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614903

RESUMO

Optical microrobotics is an emerging field that has the potential to improve upon current optical tweezer studies through avenues such as limiting the exposure of biological molecules of interest to laser radiation and overcoming the current limitations of low forces and unwanted interactions between nearby optical traps. However, optical microrobotics has been historically limited to rigid, single-body end-effectors rather than even simple machines, limiting the tasks that can be performed. Additionally, while multi-body machines such as microlevers exist in the literature, they have not yet been successfully demonstrated as tools for biological studies, such as molecule stretching. In this work we have taken a step towards moving the field forward by developing two types of microlever, produced using two-photon absorption polymerisation, to perform the first lever-assisted stretches of double-stranded DNA. The aim of the work is to provide a proof of concept for using optical micromachines for single molecule studies. Both styles of microlevers were successfully used to stretch single duplexes of DNA, and the results were analysed with the worm-like chain model to show that they were in good agreement.


Assuntos
DNA , Conformação de Ácido Nucleico , Pinças Ópticas , Estudo de Prova de Conceito , Robótica/métodos , Óptica e Fotônica/instrumentação , Óptica e Fotônica/métodos , Robótica/instrumentação
8.
Bioengineering (Basel) ; 6(4)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847117

RESUMO

The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.

9.
Sci Rep ; 6: 31301, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27501749

RESUMO

Bessel beams are nondiffracting light beams with large depth-of-focus and self-healing properties, making them suitable as a serial beam writing tool over surfaces with arbitrary topography. This property breaks the inherent resolution vs. depth-of-focus tradeoff of photolithography. One approach for their formation is to use circularly symmetric diffraction gratings. Such a ring grating was designed and fabricated for the extreme ultraviolet (EUV) wavelength of 13.5 nm, a candidate wavelength for future industrial lithography. Exposure of the aerial images showed that a Bessel beam with an approximately 1 mm long z-invariant central core of 223 nm diameter had been achieved, in good agreement with theory. Arbitrary patterns were written using the Bessel spot, demonstrating possible future application of Bessel beams for serial beam writing. Lithographic marks of ~30 nm size were also observed using a high resolution Bessel beam.

10.
Opt Lett ; 39(8): 2286-9, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978974

RESUMO

Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...