Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 196(1): 573-587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37160564

RESUMO

Molecular-targeted therapies for lung squamous cell carcinoma (LSCC) are limited mainly because targetable oncogenic aberrations are absent in LSCC. Recent genomic analyses have revealed that the fibroblast growth factor (FGF) signaling pathway plays a fundamental role in LSCC progression via cancer cell proliferation and angiogenesis. In the present study, we designed, expressed, and purified a fibroblast growth factor receptor fragment (FGFR1-Fc) fusion protein using NS/0 cells. In FGF2-FGFR1 overexpressed NCI-H1703 cells, the FGFR1-Fc fusion protein effectively inhibited proliferation and invasion and arrested the cell cycle at the G0-G1 phase. In NCI-H1703 cells treated with the FGFR1-Fc fusion protein, the phosphorylation levels of FGFR1, FRS2, ERK, and AKT were significantly reduced. Using an siRNA assay, we demonstrated that FGF2-FGFR1 is the major anti-tumor target of FGFR1-Fc fusion the FGFR1-Fc fusion protein, which also significantly inhibited proliferation and invasion by NCI-H1703 cells via the FGF2-FGFR1 signaling pathway. In addition, the FGFR1-Fc fusion protein significantly inhibited angiogenesis in an embryonic chorioallantoic membrane model. The FGFR1-Fc fusion protein may be an effective therapeutic candidate for LSCC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Imunoglobulina G , Neoplasias Pulmonares , Proteínas Recombinantes de Fusão , Humanos , Fator 2 de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Proliferação de Células , Carcinoma de Células Escamosas/genética , Neoplasias Pulmonares/tratamento farmacológico , Pulmão/metabolismo , Linhagem Celular Tumoral
2.
J Biol Chem ; 299(9): 105127, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37544647

RESUMO

Diabetic keratopathy, commonly associated with a hyperactive inflammatory response, is one of the most common eye complications of diabetes. The peptide hormone fibroblast growth factor-21 (FGF-21) has been demonstrated to have anti-inflammatory and antioxidant properties. However, whether administration of recombinant human (rh) FGF-21 can potentially regulate diabetic keratopathy is still unknown. Therefore, in this work, we investigated the role of rhFGF-21 in the modulation of corneal epithelial wound healing, the inflammation response, and oxidative stress using type 1 diabetic mice and high glucose-treated human corneal epithelial cells. Our experimental results indicated that the application of rhFGF-21 contributed to the enhancement of epithelial wound healing. This treatment also led to advancements in tear production and reduction in corneal edema. Moreover, there was a notable reduction in the levels of proinflammatory cytokines such as TNF-α, IL-6, IL-1ß, MCP-1, IFN-γ, MMP-2, and MMP-9 in both diabetic mouse corneal epithelium and human corneal epithelial cells treated with high glucose. Furthermore, we found rhFGF-21 treatment inhibited reactive oxygen species production and increased levels of anti-inflammatory molecules IL-10 and SOD-1, which suggests that FGF-21 has a protective role in diabetic corneal epithelial healing by increasing the antioxidant capacity and reducing the release of inflammatory mediators and matrix metalloproteinases. Therefore, we propose that administration of FGF-21 may represent a potential treatment for diabetic keratopathy.


Assuntos
Doenças da Córnea , Complicações do Diabetes , Diabetes Mellitus Experimental , Epitélio Corneano , Fatores de Crescimento de Fibroblastos , Mediadores da Inflamação , Estresse Oxidativo , Cicatrização , Animais , Humanos , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças da Córnea/complicações , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/metabolismo , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Epitélio Corneano/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Fatores de Crescimento de Fibroblastos/uso terapêutico , Glucose/efeitos adversos , Glucose/metabolismo , Mediadores da Inflamação/metabolismo , Metaloproteinases da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
3.
Front Pharmacol ; 14: 1176136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288111

RESUMO

Introduction: Recombinant human fibroblast growth factor 21 (FGF-21) is a potential therapeutic agent for multiple metabolic diseases. However, little is known about the toxicokinetic characteristics of FGF-21. Methods: In the present study, we investigated the toxicokinetics of FGF-21 delivered via subcutaneous injection in vivo. Twenty cynomolgus monkeys were injected subcutaneously with different doses of FGF-21 for 86 days. Serum samples were collected at eight different time points (0, 0.5, 1.5, 3, 5, 8, 12, and 24 h) on day 1, 37 and 86 for toxicokinetic analysis. The serum concentrations of FGF-21 were measured using a double sandwich Enzyme-linked immunosorbent assay. Blood samples were collected on day 0, 30, 65, and 87 for blood and blood biochemical tests. Necropsy and pathological analysis were performed on d87 and d116 (after recovery for 29 days). Results: The average AUC(0-24h) values of low-dose FGF-21 on d1, d37, and d86 were 5253, 25268, and 60445 µg h/L, and the average AUC(0-24h) values of high-dose FGF-21 on d1, d37, and d86 were 19964, 78999, and 1952821 µg h/L, respectively. Analysis of the blood and blood biochemical indexes showed that prothrombin time and AST content in the high-dose FGF-21 group increased. However, no significant changes in other blood and blood biochemical indexes were observed. The anatomical and pathological results showed that continuous subcutaneous injection of FGF-21 for 86 days did not affect organ weight, the organ coefficient, and histopathology in cynomolgus monkeys. Discussion: Our results have guiding significance for the preclinical research and clinical use of FGF-21.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA