Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202400230, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38520070

RESUMO

Hydrogels hold great promise as electrolytes for emerging aqueous batteries, for which establishing a robust electrode-hydrogel interface is crucial for mitigating side reactions. Conventional hydrogel electrolytes fabricated by ex situ polymerization through either thermal stimulation or photo exposure cannot ensure complete interfacial contact with electrodes. Herein, we introduce an in situ electropolymerization approach for constructing hydrogel electrolytes. The hydrogel is spontaneously generated during the initial cycling of the battery, eliminating the need of additional initiators for polymerization. The involvement of electrodes during the hydrogel synthesis yields well-bonded and deep infiltrated electrode-electrolyte interfaces. As a case study, we attest that, the in situ-formed polyanionic hydrogel in Zn-MnO2 battery substantially improves the stability and kinetics of both Zn anode and porous MnO2 cathode owing to the robust interfaces. This research provides insight to the function of hydrogel electrolyte interfaces and constitutes a critical advancement in designing highly durable aqueous batteries.

2.
J Am Chem Soc ; 146(9): 6199-6208, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394360

RESUMO

A reliable solid electrolyte interphase (SEI) on the metallic Zn anode is imperative for stable Zn-based aqueous batteries. However, the incompatible Zn-ion reduction processes, scilicet simultaneous adsorption (capture) and desolvation (repulsion) of Zn2+(H2O)6, raise kinetics and stability challenges for the design of SEI. Here, we demonstrate a tandem chemistry strategy to decouple and accelerate the concurrent adsorption and desolvation processes of the Zn2+ cluster at the inner Helmholtz layer. An electrochemically assembled perforative mesopore SiO2 interphase with tandem hydrophilic -OH and hydrophobic -F groups serves as a Janus mesopores accelerator to boost a fast and stable Zn2+ reduction reaction. Combining in situ electrochemical digital holography, molecular dynamics simulations, and spectroscopic characterizations reveals that -OH groups capture Zn2+ clusters from the bulk electrolyte and then -F groups repulse coordinated H2O molecules in the solvation shell to achieve the tandem ion reduction process. The resultant symmetric batteries exhibit reversible cycles over 8000 and 2000 h under high current densities of 4 and 10 mA cm-2, respectively. The feasibility of the tandem chemistry is further evidenced in both Zn//VO2 and Zn//I2 batteries, and it might be universal to other aqueous metal-ion batteries.

3.
Adv Mater ; : e2400184, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348892

RESUMO

Engineering carbonaceous cathode materials with adequately accessible active sites is crucial for unleashing their charge storage potential. Herein, activated meso-microporous shell carbon (MMSC-A) nanofibers are constructed to enhance the zinc ion storage density by forming a gradient-pore structure. A dominating pore size of 0.86 nm is tailored to cater for the solvated [Zn(H2 O)6 ]2+ . Moreover, these gradient porous nanofibers feature rapid ion/electron dual conduction pathways and offer abundant active surfaces with high affinity to electrolyte. When employed in Zn-ion capacitors (ZICs), the electrode delivers significantly enhanced capacity (257 mAh g-1 ), energy density (200 Wh kg-1 at 78 W kg-1 ), and cyclic stability (95% retention after 10 000 cycles) compared to nonactivated carbon nanofibers electrode. A series of in situ characterization techniques unveil that the improved Zn2+ storage capability stems from size compatibility between the pores and [Zn(H2 O)6 ]2+ , the co-adsorption of Zn2+ , H+ , and SO4 2- , as well as reversible surface chemical interaction. This work presents an effective method to engineering meso-microporous carbon materials toward high energy-density storage, and also offers insights into the Zn2+ storage mechanism in such gradient-pore structures.

4.
Adv Mater ; : e2313610, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348791

RESUMO

Zinc-iodine batteries have the potential to offer high energy-density aqueous energy storage, but their lifetime is limited by the rampant dendrite growth and the concurrent parasite side reactions on the Zn anode, as well as the shuttling of polyiodides. Herein, a cation-conduction dominated hydrogel electrolyte is designed to holistically enhance the stability of both zinc anode and iodine cathode. In this hydrogel electrolyte, anions are covalently anchored on hydrogel chains, and the major mobile ions in the electrolyte are restricted to be Zn2+ . Specifically, such a cation-conductive electrolyte results in a high zinc ion transference number (0.81) within the hydrogel and guides epitaxial Zn nucleation. Furthermore, the optimized Zn2+ solvation structure and the reconstructed hydrogen bond networks on hydrogel chains contribute to the reduced desolvation barrier and suppressed corrosion side reactions. On the iodine cathode side, the electrostatic repulsion between negative sulfonate groups and polyiodides hinders the loss of the iodine active material. This all-round electrolyte design renders zinc-iodine batteries with high reversibility, low self-discharge, and long lifespan.

5.
Proc Natl Acad Sci U S A ; 121(8): e2312870121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349875

RESUMO

Oxidation self-charging batteries have emerged with the demand for powering electronic devices around the clock. The low efficiency of self-charging has been the key challenge at present. Here, a more efficient autoxidation self-charging mechanism is realized by introducing hemoglobin (Hb) as a positive electrode additive in the polyaniline (PANI)-zinc battery system. The heme acts as a catalyst that reduces the energy barrier of the autoxidation reaction by regulating the charge and spin state of O2. To realize self-charging, the adsorbed O2 molecules capture electrons of the reduced (discharged state) PANI, leading to the desorption of zinc ions and the oxidation of PANI to complete self-charging. The battery can discharge for 12 min (0.5 C) after 50 self-charging/discharge cycles, while there is nearly no discharge capacity in the absence of Hb. This biology-inspired electronic regulation strategy may inspire new ideas to boost the performance of self-charging batteries.

6.
Angew Chem Int Ed Engl ; 63(8): e202318470, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179860

RESUMO

The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.

7.
Adv Mater ; 36(3): e2307298, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37909714

RESUMO

The decoupled battery design is promising for breaking the energy density limit of traditional aqueous batteries. However, the complex battery configuration and low-selective separator membranes restrict their energy output and service time. Herein, a zinc-sulfur decoupled aqueous battery is achieved by designing a high-mass loading sulfur electrode and single ion-selective membrane (ISM). A vertically assembled nanosheet network constructed with the assistance of a magnetic field enables facile electron and ion conduction in thick sulfur electrodes, which is conducive to boosting the cell-level energy output. For the tailored ISM, the Na ions anchored on its skeleton effectively prevent the crossover of OH- or Cu2+ , facilitating the transport of Na+ and ensuring structural and mechanical stability. Consequently, the Zn-S aqueous battery achieves a reversible energy density of 3988 Wh kgs -1 (by sulfur mass), stable operation over 300 cycles, and an energy density of 53.2 mWh cm-2 . The sulfur-based decoupled system may be of immediate benefit toward safe, reliable, and affordable static energy storage.

8.
Adv Sci (Weinh) ; 11(8): e2305806, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37985557

RESUMO

Aqueous zinc-ion batteries (AZIBs) are gaining popularity for their cost-effectiveness, safety, and utilization of abundant resources. MXenes, which possess outstanding conductivity, controllable surface chemistry, and structural adaptability, are widely recognized as a highly versatile platform for AZIBs. MXenes offer a unique set of functions for AZIBs, yet their significance has not been systematically recognized and summarized. This review article provides an up-to-date overview of MXenes-based electrode materials for AZIBs, with a focus on the unique functions of MXenes in these materials. The discussion starts with MXenes and their derivatives on the cathode side, where they serve as a 2D conductive substrate, 3D framework, flexible support, and coating layer. MXenes can act as both the active material and a precursor to the active material in the cathode. On the anode side, the functions of MXenes include active material host, zinc metal surface protection, electrolyte additive, and separator modification. The review also highlights technical challenges and key hurdles that MXenes currently face in AZIBs.

9.
Adv Mater ; 36(3): e2306734, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37843433

RESUMO

Side reactions on zinc metal (Zn) anodes are formidable issues that cause limited battery life of aqueous zinc-ion batteries (AZIBs). Here, a facile and controllable layer-by-layer (LbL) self-assembly technique is deployed to construct an ion-conductive and mechanically robust electrolyte/anode interface for stabilizing the Zn anode. The LbL film consists of two natural and biodegradable bio-macromolecules, chitosan (CS) and sodium alginate (SA). It is shown that such an LbL film tailors the solvation sheath of Zn ions and facilitates the oriented deposition of Zn. Symmetric cells with the four double layers of CS/SA ((CS/SA)4 -Zn) exhibit stable cycles for over 6500 h. The (CS/SA)4 -Zn||H2 V3 O8 coin cell maintains a specific capacity of 125.5 mAh g-1 after 14 000 cycles. The pouch cell with an electrode area of 5 × 7 cm2 also presents a capacity retention of 83% for over 500 cycles at 0.1 A g-1 . No obvious dendrites are observed after long cycles in both symmetric and full cells. Given the cost-effective material and fabrication, and environmental friendliness of the LbL films, this Zn protection strategy may boost the industrial application of AZIBs.

10.
Nanomicro Lett ; 16(1): 46, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064010

RESUMO

Organic compounds have the advantages of green sustainability and high designability, but their high solubility leads to poor durability of zinc-organic batteries. Herein, a high-performance quinone-based polymer (H-PNADBQ) material is designed by introducing an intramolecular hydrogen bonding (HB) strategy. The intramolecular HB (C=O⋯N-H) is formed in the reaction of 1,4-benzoquinone and 1,5-naphthalene diamine, which efficiently reduces the H-PNADBQ solubility and enhances its charge transfer in theory. In situ ultraviolet-visible analysis further reveals the insolubility of H-PNADBQ during the electrochemical cycles, enabling high durability at different current densities. Specifically, the H-PNADBQ electrode with high loading (10 mg cm-2) performs a long cycling life at 125 mA g-1 (> 290 cycles). The H-PNADBQ also shows high rate capability (137.1 mAh g-1 at 25 A g-1) due to significantly improved kinetics inducted by intramolecular HB. This work provides an efficient approach toward insoluble organic electrode materials.

12.
Adv Mater ; 35(44): e2306531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608787

RESUMO

Rechargeable aqueous Zn-I2 batteries (ZIB) are regarded as a promising energy storage candidate. However, soluble polyiodide shuttling and rampant Zn dendrite growth hamper its commercial implementation. Herein, a hetero-polyionic hydrogel is designed as the electrolyte for ZIBs. On the cathode side, iodophilic polycationic hydrogel (PCH) effectively alleviates the shuttle effect and facilitates the redox kinetics of iodine species. Meanwhile, polyanionic hydrogel (PAH) toward Zn metal anode uniformizes Zn2+ flux and prevents surface corrosion by electrostatic repulsion of polyiodides. Consequently, the Zn symmetric cells with PAH electrolyte demonstrate remarkable cycling stability over 3000 h at 1 mA cm-2 (1 mAh cm-2 ) and 800 h at 10 mA cm-2 (5 mAh cm-2 ). Moreover, the Zn-I2 full cells with PAH-PCH hetero-polyionic hydrogel electrolyte deliver a low-capacity decay of 0.008 ‰ per cycle during 18 000 cycles at 8 C. This work sheds light on hydrogel electrolytes design for long-life conversion-type aqueous batteries.

13.
Nanoscale Horiz ; 8(10): 1403-1410, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37482887

RESUMO

All-inorganic cesium lead bromide (CsPbBr3) quantum dots (QDs) with high photoluminescence (PL) quantum efficiency have been reported as ideal gain materials for high-performance lasers. Nevertheless, isolated CsPbBr3 QDs have not achieved lasing emission (LE) due to finite absorption cross-section. Here, we demonstrate continuous-wave lasing of isolated CsPbBr3 QDs embedded in a microcavity. Distributed Bragg reflectors (DBRs), together with isolated CsPbBr3 QDs in a polymer matrix, are introduced to construct a vertical-cavity surface-emitting laser (VCSEL), which exhibits stable single-mode lasing emissions with an ultra-low threshold of 8.8 W cm-2 and a high Q factor of 1787. Such perovskite-based microcavity structures sustain highly stable excitons at room temperature and can provide an excellent experimental platform to further study the single-particle nano-lasers and quantum physics frontiers such as exciton-polariton condensation, single-photon emission, and optical quantum communication.

14.
Artigo em Inglês | MEDLINE | ID: mdl-37279101

RESUMO

The main role of inert fillers in polymer electrolytes is to enhance ionic conductivity. However, lithium ions in gel polymer electrolytes (GPEs) conduct in liquid solvent rather than along the polymer chains. So far, the main role of inert fillers in improving the electrochemical performance of GPEs is still unclear. Here, various low-cost and common inert fillers (Al2O3, SiO2, TiO2, ZrO2) are introduced into GPEs to study their effects on Li-ion polymer batteries. It is found that the addition of inert fillers has different effects on ionic conductivity, mechanical strength, thermal stability, and, dominantly, interfacial properties. Compared with other gel electrolytes containing SiO2, TiO2, or ZrO2 fillers, those with Al2O3 fillers exhibit the most favorable performance. The high performance is ascribed to the interaction between the surface functional groups of Al2O3 and LiNi0.8Co0.1Mn0.1O2, which alleviates the decomposition of the organic solvent by the cathode, resulting in the formation of a high-quality Li+ conductor interfacial layer. This study provides an important reference for the selection of fillers in GPEs, surface modification of separators, and cathode surface coating.

15.
ACS Nano ; 17(9): 8622-8633, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37129379

RESUMO

We have achieved the synthesis of dual-metal single atoms and atomic clusters that co-anchor on a highly graphitic carbon support. The catalyst comprises Ni4 (and Fe4) nanoclusters located adjacent to the corresponding NiN4 (and FeN4) single-atom sites, which is verified by systematic X-ray absorption characterization and density functional theory calculations. A distinct cooperation between Fe4 (Ni4) nanoclusters and the corresponding FeN4 (NiN4) atomic sites optimizes the adsorption energy of reaction intermediates and reduces the energy barrier of the potential-determining steps. This catalyst exhibits enhanced oxygen reduction and evolution activity and long-cycle stability compared to counterparts without nanoclusters and commercial Pt/C. The fabricated Zn-air batteries deliver a high power density and long-term cyclability, demonstrating their prospects in energy storage device applications.

16.
Nano Lett ; 23(9): 4000-4007, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37125765

RESUMO

Single-atom catalysts (SACs) with high atom utilization and outstanding catalytic selectivity are useful for improving battery performance. Herein, atomically dispersed Ni-N4 and Fe-N4 dual sites coanchored on porous hollow carbon nanocages (Ni-Fe-NC) are fabricated and deployed as the sulfur host for Li-S battery. The hollow and conductive carbon matrix promotes electron transfer and also accommodates volume fluctuation during cycling. Notably, the high d band center of Fe in Fe-N4 site demonstrates strong polysulfide affinity, leading to an accelerated sulfur reduction reaction. Meanwhile, Li2S on the Ni-N4 site delivers a metallic property with high S 2p electron density of states around the Femi energy level, enabling a low sulfur evolution reaction barrier. The dual catalytic effect on Ni-Fe-NC endows sulfur cathode high energy density, prolonged lifespan, and low polarization.

17.
Adv Mater ; 35(24): e2300053, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37060108

RESUMO

In the literature, Zn-Mn aqueous batteries (ZMABs) confront abnormal capacity behavior, such as capacity fluctuation and diverse "unprecedented performances." Because of the electrolyte additive-induced complexes, various charge/discharge behaviors associated with different mechanisms are being reported. However, the current performance assessment remains unregulated, and only the electrode or the electrolyte is considered. The lack of a comprehensive and impartial performance evaluation protocol for ZMABs hinders forward research and commercialization. Here, a pH clue (proton-coupled reaction) to understand different mechanisms is proposed and the capacity contribution is normalized. Then, a series of performance metrics, including rated capacity (Cr ) and electrolyte contribution ratio from Mn2+ (CfM), are systematically discussed based on diverse energy storage mechanisms. The relationship between Mn (II) ↔ Mn (III) ↔ Mn (IV) conversion chemistry and protons consumption/production is well-established. Finally, the concrete design concepts of a tunable H+ /Zn2+ /Mn2+ storage system for customized application scenarios, opening the door for the next-generation high-safety and reliable energy storage system, are proposed.

18.
Angew Chem Int Ed Engl ; 62(17): e202219000, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36866855

RESUMO

Unstable cathode-electrolyte and/or anode-electrolyte interface in polymer-based sodium-ion batteries (SIBs) will deteriorate their cycle performance. Herein, a unique solvated double-layer quasi-solid polymer electrolyte (SDL-QSPE) with high Na+ ion conductivity is designed to simultaneously improve stability on both cathode and anode sides. Different functional fillers are solvated with plasticizers to improve Na+ conductivity and thermal stability. The SDL-QSPE is laminated by cathode- and anode-facing polymer electrolyte to meet the independent interfacial requirements of the two electrodes. The interfacial evolution is elucidated by theoretical calculations and 3D X-ray microtomography analysis. The Na0.67 Mn2/3 Ni1/3 O2 |SDL-QSPE|Na batteries exhibit 80.4 mAh g-1 after 400 cycles at 1 C with the Coulombic efficiency close to 100 %, which significantly outperforms those batteries using the monolayer-structured QSPE.

19.
ACS Nano ; 17(7): 6770-6780, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939286

RESUMO

Promoting the electron occupancy of active sites to unity is an effective method to enhance the oxygen evolution reaction (OER) performance of spinel oxides, but it remains a great challenge. Here, an in situ approach is developed to modify the valence state of octahedral Ni cations in NiFe2O4 inverse spinel via surface sulfates (SO42-). Different from previous studies, SO42- is directly anchored on the spinel surface instead of forming from uncontrolled conversion or surface reconstruction. Experiment and theoretical calculations reveal the precise adsorption sites and spatial arrangement for SO42- species. As a main promoting factor, surface SO42- effectively converts the crystal field stable Ni state (t2g6eg2) to the near-unity eg electron state (t2g6eg1). Moreover, the inevitable oxygen vacancies (Vo) further optimize the energy barrier of the potential-determining step (from OH* to O*). This co-modification strategy enhances turnover frequency-based electrocatalytic activity about two orders higher than the control sample without surface sulfates. This work may provide insight into the OER activity enhancement mechanism by the oxyanion groups.

20.
Sci Adv ; 8(41): eabp8960, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240270

RESUMO

The diffusion-limited aggregation (DLA) of metal ion (Mn+) during the repeated solid-to-liquid (StoL) plating and liquid-to-solid (LtoS) stripping processes intensifies fatal dendrite growth of the metallic anodes. Here, we report a new solid-to-solid (StoS) conversion electrochemistry to inhibit dendrites and improve the utilization ratio of metals. In this StoS strategy, reversible conversion reactions between sparingly soluble carbonates (Zn or Cu) and their corresponding metals have been identified at the electrode/electrolyte interface. Molecular dynamics simulations confirm the superiority of the StoS process with accelerated anion transport, which eliminates the DLA and dendrites in the conventional LtoS/StoL processes. As proof of concept, 2ZnCO3·3Zn(OH)2 exhibits a high zinc utilization of ca. 95.7% in the asymmetry cell and 91.3% in a 2ZnCO3·3Zn(OH)2 || Ni-based full cell with 80% capacity retention over 2000 cycles. Furthermore, the designed 1-Ah pouch cell device can operate stably with 500 cycles, delivering a satisfactory total energy density of 135 Wh kg-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...