Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4017, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740759

RESUMO

Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.


Assuntos
Estimulação Encefálica Profunda , Tecnologia sem Fio , Estimulação Encefálica Profunda/instrumentação , Estimulação Encefálica Profunda/métodos , Animais , Tecnologia sem Fio/instrumentação , Ratos , Eletrodos Implantados , Epilepsia/terapia , Masculino , Próteses e Implantes , Ratos Sprague-Dawley , Transdutores , Desenho de Equipamento , Ondas Ultrassônicas
2.
Regen Biomater ; 11: rbad109, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404618

RESUMO

Lipid droplets (LDs) participating in various cellular activities and are increasingly being emphasized. Fluorescence imaging provides powerful tool for dynamic tracking of LDs, however, most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield (PLQY), poor photostability and tedious washing procedures. Herein, a novel yellow-emissive carbon dot (OT-CD) has been synthesized conveniently with high PLQY up to 90%. Besides, OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2, which is much higher than most LDs probes. These characters enable OT-CD high brightness, stable and wash-free LDs probing, and feasible for in vivo imaging. Then, detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded, including ferroptosis and other diseases processes. Furthermore, fast whole imaging of zebrafish and identified LD enrichment in injured liver indicate its further feasibility for in vivo application. In contrast to the reported studies to date, this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes, combing the advantages of easy and high-yield production, as well as robust brightness and stability for long-term imaging, facilitating investigations into organelle interactions and LD-associated diseases.

3.
Exp Ther Med ; 26(5): 531, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37869648

RESUMO

Osteomyelitis is an infectious disease of bone tissue caused by bacterial infection, which can infect through hematogenous, traumatic or secondary ways and then lead to acute or chronic bone injury and relative clinical symptoms, bringing physical injury and economic burden to patients. Frizzled related protein (FRZB) participates in the regulation of various diseases (osteoarthritis, cardiovascular diseases and types of cancer) by regulating cell proliferation, motility, differentiation and inflammation, while its function in osteomyelitis remains to be elucidated. The present study aimed to uncover the role and underlying mechanism of FRZB mediation in Staphylococcus aureus (S. aureus)-induced osteomyelitis. Human bone marrow derived stem cells (hBMSCs) were treated with S. aureus to imitate an inflammatory osteomyelitis micro-environment in vitro, then mRNA and protein expression were severally assessed by RT-PCR and western blotting. The activity, apoptosis and differentiation of the cells were characterized via CCK-8, caspase-3 activity and Alizarin red sulfate/alkaline phosphatase staining, respectively. Expression levels of FRZB were upregulated in S. aureus-infected hBMSCs. Over-expression of FRZB significantly reduced hBMSC cell viability and differentiation while promoting cell apoptosis with or without S. aureus infection. However, FRZB knockdown reversed these effects. Once Wnt was impeded, the effect of FRZB downregulation was impeded to a great extent. Taken together, FRZB participated to regulate the osteomyelitis by activating the Wnt/ß-catenin signaling pathway.

4.
ACS Nano ; 17(16): 15796-15809, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37530448

RESUMO

Electrical deep brain stimulation (DBS) is a top priority for pharmacoresistant epilepsy treatment, while less-invasive wireless DBS is an urgent priority but challenging. Herein, we developed a conceptual wireless DBS platform to realize local electric stimulation via 1D-structured magnetoelectric Fe3O4@BaTiO3 nanochains (FBC). The FBC was facilely synthesized via magnetic-assisted interface coassembly, possessing a higher electrical output by inducing larger local strain from the anisotropic structure and strain coherence. Subsequently, wireless magnetoelectric neuromodulation in vitro was synergistically achieved by voltage-gated ion channels and to a lesser extent, the mechanosensitive ion channels. Furthermore, FBC less-invasively injected into the anterior nucleus of the thalamus (ANT) obviously inhibited acute and continuous seizures under magnetic loading, exhibiting excellent therapeutic effects in suppressing both high voltage electroencephalogram signals propagation and behavioral seizure stage and neuroprotection of the hippocampus mediated via the Papez circuit similar to conventional wired-in DBS. This work establishes an advanced antiepilepsy strategy and provides a perspective for other neurological disorder treatment.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia , Humanos , Convulsões/terapia , Epilepsia/terapia , Núcleos Anteriores do Tálamo/fisiologia , Hipocampo
5.
J Mater Chem B ; 11(38): 9056-9083, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37649427

RESUMO

Nerve injuries and neurological diseases remain intractable clinical challenges. Despite the advantages of stem cell therapy in treating neurological disorders, uncontrollable cell fates and loss of cell function in vivo are still challenging. Recently, increasing attention has been given to the roles of external physical signals, such as electricity and ultrasound, in regulating stem cell fate as well as activating or inhibiting neuronal activity, which provides new insights for the treatment of neurological disorders. However, direct physical stimulations in vivo are short in accuracy and safety. Functional materials that can absorb energy from a specific physical field exerted in a wireless way and then release another localized physical signal hold great advantages in mediating noninvasive or minimally invasive accurate indirect physical stimulations to promote the therapeutic effect on neurological disorders. In this review, the mechanism by which various physical signals regulate stem cell fate and neuronal activity is summarized. Based on these concepts, the approaches of using functional materials to mediate indirect wireless physical stimulation for neuro-modulation and regeneration are systematically reviewed. We expect that this review will contribute to developing wireless platforms for neural stimulation as an assistance for the treatment of neurological diseases and injuries.

6.
Regen Biomater ; 10: rbad064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501677

RESUMO

Endoscopic submucosal dissection (ESD) has been clinically proved to have prominent advantages in the treatment of early gastrointestinal cancers over traditional surgery, including less trauma, fewer complications, a quicker recovery and lower costs. During the procedure of ESD, appropriate and multifunctional submucosal injected materials (SIMs) as submucosal cushions play an important role, however, even with many advances in design strategies of SIMs over the past decades, the performance of the submucosal cushions with postoperative management function seems to be still unsatisfactory. In this review, we gave a brief historical recount about the clinical development of SIMs, then some common applications of hydrogels used as SIMs in ESD were summarized, while an account of the universal challenges during ESD procedure was also outlined. Going one step further, some cutting-edge functional strategies of hydrogels for novel applications in ESD were exhibited. Finally, we concluded the advantages of hydrogels as SIMs for ESD as well as the treatment dilemma clinicians faced when it comes to deeply infiltrated lesions, some technical perspectives about linking the clinical demand with commercial supply were also proposed. Encompassing the basic elements of SIMs used in ESD surgery and the corresponding postoperative management requirements, this review could be a good reference for relevant practitioners in expanding the research horizon and improving the well-being index of patients.

7.
Acta Biomater ; 168: 470-483, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37495167

RESUMO

Magnetic fields play an essential role in material science and biomedical engineering. Magnetic-responsive materials can be arranged orderly in matrix to realize the construction of an aligned scaffold under magnetic induction. However, a single topological cue is insufficient to activate neural tissue regeneration, demanding more cues to promote regeneration synergistically, such as electrical stimulation and a biomimetic matrix. Herein, we propose one-dimensional (1D) magnetoelectric Fe3O4@BaTiO3 nanochains with controllable lengths under the regulation of a magnetic field. These nanochains can be oriented in the biomimetic hydrogel under magnetic guidance and induce the hydrogel microfiber to align along the direction of the nanochains, which is beneficial for cell-oriented outgrowth. This aligned hydrogel enabled wireless electrical stimulation mediated by magnetoelectric nanochains under magnetic stimulation, thereby activating the voltage-gated ion channel. Consequently, topological and electrical cues in this multifunctional biomimetic hydrogel synergistically enhanced the expression of neural functional proteins, facilitating synapse remodeling and neural regeneration. Predictably, the construction of multifunctional hydrogels based on low-cost and facile synthesis of magnetoelectric nanochains is an emerging patient-friendly and effective therapeutic strategy for neural or other tissue regeneration. STATEMENT OF SIGNIFICANCE: A facile and controllable magnetic strategy is established to manipulate 1D nanomaterial growth, matrix topography, and wireless electrical stimulation of cells. First, the magnetic-assisted interface co-assembly was used to control the length of Fe3O4@BaTiO3 nanochains with enhanced magnetoelectric effect. Then, the motion of the magnetic-induced nanochains guided the orientation of nanofibers in a 3D biomimetic hydrogel matrix. Finally, wireless electrical signals and topological cues in the biomimetic matrix synergistically promoted orderly aligned cell outgrowth and membrane depolarization by Ca2+ influx, thus enhancing nerve cell synaptic plasticity and functional expression. Consequently, this work provides a conceptual strategy from material design to extracellular matrix signal manipulation and synergistic induction of tissue regeneration.


Assuntos
Sinais (Psicologia) , Neurônios , Humanos , Neurônios/metabolismo , Hidrogéis/metabolismo , Eletricidade , Alicerces Teciduais
8.
J Mater Chem B ; 11(25): 5898-5909, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318801

RESUMO

As nanozymes, carbon dots (CDs) have attracted increasing attention due to their remarkable properties. Besides general enzyme activity, their photoluminescence and photothermal properties have been explored rarely, whereas their synergistic effects might produce CDs-based nanozymes of high performance. Here, iron-doped CDs (Fe-CDs) with tunable fluorescence and enhanced peroxidase-like activity were designed to develop a novel "three-in-one" multifunctional platform to provide dual-mode/dual-target detection and near infrared (NIR)-assisted antibacterial ability. This proposed strategy for a H2O2 test exhibited a wide linear relationship with a low limit of detection (LOD) of 0.16 µM (colorimetric) and 0.14 µM (ratiometric fluorescent). Furthermore, due to the nature of cholesterol being oxidized to H2O2 by cholesterol oxidase, sensitive and selective detection of cholesterol was realized, and the LOD was 0.42 µM (colorimetric) and 0.27 µM (ratiometric fluorescent), surpassing that reported previously. This result suggested that Fe-CDs could be used for dual-mode quantification of large family of H2O2-producing metabolites, thereby paving the way for developing multi-mode sensing strategies based on nanozymes. Moreover, this platform showed synergistic effects for antibacterial application, indicating great prospects for bacterial killing as well as wound disinfection and healing. Hence, this platform could contribute to the construction of multifunctional CDs with high performance.


Assuntos
Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Ferro/química , Nanoestruturas , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Catálise , Peróxido de Hidrogênio/química , Colesterol/química , Humanos
9.
J Mater Chem B ; 11(28): 6567-6580, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37357795

RESUMO

As one of the physical stimulus tools to target neuromodulation-related biological entities, mild thermal stimulus has attracted increasing attention in unraveling neural differentiation processing. However, thermal stimulus for neural behavior regulation has been relatively unexplored due to the challenge in finding a good method of exerting thermal stimulus. Considering the distance-dependent temperature preservation efficiency and the native importance of a bioactive matrix, we herein put forward the design of a photothermal hydrogel by immobilizing photothermal dopamine (DA) in hyaluronic acid (HA) chains. Benefitting from the minuscule disaccharide repeat unit size (≈1 nm) of HA used for the DA grafting, and the additional adhesion capacity of the DA for recruiting cells, a uniformly close distance from heating source to cells is realized. Therefore, we successfully established a near-infrared light initiated photothermal stimulus platform, with full bioactivity and high thermal manipulation efficiency. After extensive characterization, we proved that the thermal activation, from matrix to cells, triggered TRPV1 ion channel opening and Ca2+ influx, which finally promoted neural differentiation of bone marrow mesenchymal stem cells (BMSCs). This work broadens the possibilities of polymeric photothermal materials, and is of great significance for remotely manipulating neural and other cellular machinery for stem cell therapeutics in tissue engineering.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Engenharia Tecidual , Células-Tronco , Diferenciação Celular
10.
J Mater Chem B ; 11(22): 4934-4945, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194435

RESUMO

Wound management is highly clinically desirable due to the complexity and diversity of the wound repair process. However, it is still a major clinical challenge to develop a wound dressing with the capabilities of real-time and remote monitoring during wound healing. Herein, we have designed a polymer-based wound dressing in the form of a conductive, soft, temperature-responsive, antibacterial and biocompatible hydrogel, which is composed of polyacrylic acid (PAA)-grafted poly(N-isopropylacrylamide) (PNIPAM), vinyl-based polyacrylamide (PAM) and silver nanowires (AgNWs). In this hydrogel dressing, PAA-grafted PNIPAM acts as conformal interface and intrinsic temperature-responsive matrix, PAM helps to construct semi-penetrating polymer networks (SIPNs) to improve the mechanical properties, while the AgNWs introduce a three-dimensional conductive hydrogel network with antibacterial properties and sensing properties. The constructed hydrogel matrix was connected to a Bluetooth module to transmit the temperature changes wirelessly to a smart device. The design integrating a conductive hydrogel dressing with a wireless transmission module realized the real-time and wireless monitoring of the wound temperature, which is helpful to provide an early diagnosis of infection. This proof-of-concept study is highly promising in the development of new strategies to significantly improve wound management and other pathological diagnostics or treatments.


Assuntos
Hidrogéis , Nanofios , Temperatura , Prata , Cicatrização , Bandagens , Polímeros , Antibacterianos/farmacologia
11.
Biosens Bioelectron ; 231: 115288, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37058960

RESUMO

Bacterial cellulose (BC) with its inherent nanofibrils framework is an attractive building block for the fabrication of sustainable bioelectronics, but there still lacks an effective and green strategy to regulate the hydrogen-bonding topological structure of BC to improve its optical transparency and mechanical stretchability. Herein, we report an ultra-fine nanofibril-reinforced composite hydrogel by utilizing gelatin and glycerol as hydrogen-bonding donor/acceptor to mediate the rearrangement of the hydrogen-bonding topological structure of BC. Attributing to the hydrogen-bonding structural transition, the ultra-fine nanofibrils were extracted from the original BC nanofibrils, which reduced the light scattering and endowed the hydrogel with high transparency. Meanwhile, the extracted nanofibrils were connected with gelatin and glycerol to establish an effective energy dissipation network, leading to an increase in stretchability and toughness of hydrogels. The hydrogel also displayed tissue-adhesiveness and long-lasting water-retaining capacity, which acted as bio-electronic skin to stably acquire the electrophysiological signals and external stimuli even after the hydrogel was exposing to air condition for 30 days. Moreover, the transparent hydrogel could also serve as a smart skin dressing for optical identification of bacterial infection and on-demand antibacterial therapy after combined with phenol red and indocyanine green. This work offers a strategy to regulate the hierarchical structure of natural materials for designing skin-like bioelectronics toward green, low cost, and sustainability.


Assuntos
Técnicas Biossensoriais , Nanofibras , Celulose/química , Hidrogéis/química , Gelatina , Glicerol , Nanofibras/química , Hidrogênio
12.
ACS Sens ; 8(3): 1161-1172, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36795996

RESUMO

Mitochondria play significant roles in maintaining a stable internal environment for cell metabolism. Hence, real-time monitoring of the dynamics of mitochondria is essential for further understanding mitochondria-related diseases. Fluorescent probes provide powerful tools for visualizing dynamic processes. However, most mitochondria-targeted probes are derived from organic molecules with poor photostability, making long-term dynamic monitoring challenging. Herein, we design a novel mitochondria-targeted probe based on carbon dots with high performance for long-term tracking. Considering that the targeting ability of CDs is related to surface functional groups, which are generally determined by the reaction precursors, we successfully constructed mitochondria-targeted O-CDs with emission at 565 nm through solvothermal treatment of m-diethylaminophenol. The O-CDs are bright with a high quantum yield of 12.61%, high mitochondria-targeting ability, and good stability. The O-CDs possess a high quantum yield (12.61%), specific mitochondria-targeting ability, and outstanding optical stability. Owing to the abundant hydroxyl and ammonium cations on the surface, O-CDs showed obvious accumulation in mitochondria with a high colocalization coefficient of up to 0.90 and remained steady even after fixation. Besides, O-CDs showed outstanding compatibility and photostability under various interruptions or long-time irradiation. Therefore, O-CDs are preferable for the long-term tracking of dynamic mitochondrial behavior in live cells. We first observed the mitochondrial fission and fusion behaviors in HeLa cells, and then, the size, morphology, and distribution of mitochondria in physiological or pathological conditions were clearly recorded. More importantly, we observed different dynamics interactions between mitochondria and lipid droplets during the apoptosis and mitophagy processes. This study provides a potential tool for exploring interactions between mitochondria and other organelles, further promoting the research on mitochondria-related diseases.


Assuntos
Carbono , Dinâmica Mitocondrial , Carbono/química , Humanos , Células HeLa , Corantes Fluorescentes/química , Mitocôndrias
13.
Carbohydr Polym ; 306: 120578, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746568

RESUMO

With wide clinical demands, therapies for traumatic brain injury (TBI) are far from satisfactory. Combining the merits of stem cells but avoiding the risk of immunologic rejection, bone marrow mesenchymal stem cell-derived exosomes (BME) attract increasing interests and have been proved effective for TBI repair by intravenous or in situ injection. However, difficulties in sustained delivery or aggregation in lesion sites remain obstacle to using BME for TBI. Inspired by that hydrogels are promising to bridge the destroyed neural gap and provide neural niches, we raised a novel strategy of incorporating BME into hyaluronan-collagen hydrogel (DHC-BME) to achieve both mimicking of brain matrix and steady release of exosomes, and thus realizing TBI repair. External characterizations proved that the BME and DHC synergistically promoted neural stem cells (NSCs) differentiation into neurons and oligodendrocytes while inhibited astrocytes differentiation. DHC-BME induced angiogenesis and neurogenesis, from endogenous NSC recruitment to neuronal differentiation and vascularization to synergistically promote axonal regeneration, remyelination, synapse formation and even brain structural remodeling, and lastly, neurological functional recovery of TBI.


Assuntos
Lesões Encefálicas Traumáticas , Exossomos , Humanos , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/patologia , Neurogênese
14.
ACS Appl Mater Interfaces ; 15(4): 5897-5909, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656061

RESUMO

A hydrogel that fuses long-term biologic integration, multimodal responsiveness, and therapeutic functions has received increasing interest as a wearable and implantable sensor but still faces great challenges as an all-in-one sensor by itself. Multiple bonding with stimuli response in a biocompatible hydrogel lights up the field of soft hydrogel interfaces suitable for both wearable and implantable applications. Given that, we proposed a strategy of combining chemical cross-linking and stimuli-responsive physical interactions to construct a biocompatible multifunctional hydrogel. In this hydrogel system, ureidopyrimidinone/tyramine (Upy/Tyr) difunctionalization of gelatin provides abundant dynamic physical interactions and stable covalent cross-linking; meanwhile, Tyr-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) acts as a conductive filler to establish electrical percolation networks through enzymatic chemical cross-linking. Thus, the hydrogel is characterized with improved conductivity, conformal biointegration features (i.e., high stretchability, rapid self-healing, and excellent tissue adhesion), and multistimuli-responsive conductivity (i.e., temperature and urea). On the basis of these excellent performances, the prepared multifunctional hydrogel enables multimodal wearable sensing integration that can simultaneously track both physicochemical and electrophysiological attributes (i.e., motion, temperature, and urea), providing a more comprehensive monitoring of human health than current wearable monitors. In addition, the electroactive hydrogel here can serve as a bidirectional neural interface for both neural recording and therapeutic electrostimulation, bringing more opportunities for nonsurgical diagnosis and treatment of diseases.


Assuntos
Técnicas Biossensoriais , Terapia por Estimulação Elétrica , Dispositivos Eletrônicos Vestíveis , Humanos , Hidrogéis/química , Movimento (Física) , Condutividade Elétrica
15.
Carbohydr Polym ; 302: 120403, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604075

RESUMO

Conductive hydrogel (CH) as flexible electrophysiology interface has become the new trend of bioelectronics, but still challenging in synergizing the biocompatibility, mechanics and comprehensive electrical performance. Hyaluronic acid (HA), featured with abundant active sites for personalized-modification and well-known biocompatibility, is one of the alterative candidates. The obstacle lies in the unstable conductivity from the ionic conduction, and the electronic conduction by embedding conductive nanoparticles (NPs) is likely to result in inhomogeneous CH with poor stretchability and discontinuous conductive network. Herein, inspired by catechol chemistry, dopamine (DA)-modified HA was homogeneously composited with DA-modified poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, named PP), to produce particle-free conductive hydrogel (HA-DA-PP). The DA-introduced multiple bondings in HA network and PP molecules brought aqueous conductive PP into HA hydrogel to form a homogeneous crosslinking network, imparted the flexible stretchability. By accurately regulation, HA-DA-PP achieved high stretchability with large tensile deformation (over 470 %) in the category of natural polymer-based hydrogels. Moreover, the interaction between DA and PP (conformational transition and charge transfer) could effectively enhance the hydrogel's conductivity. Consequently, HA-DA-PP hydrogel showed high sensibility to human movement, epidermal and in vivo electrophysiological signals monitoring. Overall, DA-mediated multiple bonding is a powerful strategy for constructing CH with high performance for bioelectronics.


Assuntos
Ácido Hialurônico , Hidrogéis , Humanos , Hidrogéis/química , Ácido Hialurônico/química , Dopamina , Polímeros/química , Conformação Molecular , Condutividade Elétrica
16.
J Mater Chem B ; 11(2): 430-440, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36524427

RESUMO

Optogenetics using light-sensitive proteins such as calcium transport channel rhodopsin (CatCh) opens up new possibilities for non-invasive remote manipulation of neural function. However, current optogenetic approaches for neurological disorder therapies rely on visible light excitation and are rarely applied to neurogenesis and nerve regeneration. Herein, we propose a new strategy for tissue engineering which combines optogenetic technology and biomimetic nerve scaffolds. Upconversion nanoparticles (UCNPs) were synthesized and integrated with oriented fibrillar PCL membranes with a collagen coating to establish neuro-matrix interfaces. Benefiting from the excellent bioactivity, oriented fibrillation and NIR-photoresponsivity, the CatCh-transfected PC12 cells on these interfaces exhibited enhanced cell elongation and neurite extension, as well as upregulated neurogenesis upon NIR excitation. Furthermore, a UCNP-integrated scaffold as an optogenetic actuator allowed NIR to penetrate dermal tissues to mediate neural activation, with an efficiency comparable to that of a 470 nm blue light. Compared with current visible light-excited optogenetics, our composite scaffold-mediated NIR stimulation addresses the problem of tissue penetration and will enable less-invasive neurofunctional manipulation, with the potential for remote therapy.


Assuntos
Nanopartículas , Optogenética , Raios Infravermelhos , Neurônios , Células PC12 , Ratos , Animais
17.
Small ; 19(7): e2206231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464643

RESUMO

The past decades have witnessed the rational design of novel functional nanomaterials and the potential to revolutionize many applications. With the increasing focus on electronic biological processes, novel photovoltaic nanomaterials are highly expectable for empowering new therapeutic strategies such as establishing a link between endogenous electric field (EEF) and electrotherapy. Compared to traditional invasive stimulation, the light-initiating strategy has the advantages of non-invasion, non-power supply, and precise controllability. Whereas, common photoactivated materials require short-wavelength light excitation accompanied by poor tissue penetration and biohazard. Herein, by the construction of p-n heterostructured Bi2 S3 /TiO2 /rGO (BTG) nanoparticles, broadener light absorption and higher light conversion than regular UV excitation are realized. Simultaneously, the photoelectric performance of BTG heterostructure, as well as the synergistic effect of Bi2 S3 morphology, are revealed. Besides, the rationally designed biomimetic hydrogel matrix consisting of collagen and hyaluronic acid provides appropriate bioactivity, interface adhesion, mechanical matching, and electron transfer. Therefore, the photovoltaic BTG-loaded matrix provides a platform of light-driven electrical stimulation, coupling the EEF to modulate the electrophysiological and regeneration microenvironment. The implementation of photoelectric stimulation holds broad prospects for non-drug therapy and electrical-related biological process modulation including osseointegration, nerve regeneration, electronic skin, and wound healing.


Assuntos
Terapia por Estimulação Elétrica , Grafite , Cicatrização , Grafite/química
18.
J Mater Chem B ; 10(48): 10001-10017, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472327

RESUMO

With the advancement of minimally invasive interventional therapy, biological heart valves (BHVs) have been extensively used in clinics. However, BHVs are generally prone to degeneration within 10-15 years after implantation due to defects including cytotoxicity, immune response, calcification and thrombosis, which are closely related to glutaraldehyde-crosslinking. In this work, we prepared a functionalized BHV through the in situ polymerization of methacrylated porcine pericardium and 2-hydroxyethyl methacrylate to avoid and overcome the defects of glutaraldehyde-crosslinked BHVs. The functionalized BHV was proven to be stable against enzymatic degradation and compatible towards HUVECs. After implantation in rats subcutaneously, a significantly mitigated immune response and reduced calcification were observed in the functionalized BHV. With the grafting of hydrophilic 2-hydroxyethyl methacrylate polymers, the antithrombogenicity of BHV was markedly enhanced by resisting the unfavorable adhesion of blood components. Moreover, the hydrodynamics of the functionalized BHV totally conformed to ISO 5840-3 under a wide range of simulated physiological conditions. These results indicate that the functionalized BHV with enhanced biocompatibility, anticalcification property and antithrombogenicity exhibited a low risk of degeneration and should be explored for further application.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Suínos , Ratos , Animais , Glutaral , Valvas Cardíacas
19.
Biomaterials ; 290: 121849, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252427

RESUMO

Current treatments including drug therapy, medical device implantation, and organ transplantation have considerable shortcomings for myocardial infarction (MI), such as high invasiveness, the scarce number of donor organs, easy thrombosis, immune rejection, and poor therapeutic effects. Therefore, the development of new solutions to repair infarcted hearts is urgently needed. Smart responsive injectable hydrogels have served as a good foundation in biomedical engineering, especially for cardiac regeneration. Herein, we synthesized an injectable hydrogel that responds to the inflammatory microenvironment at the site of MI to provide the drug curcumin (Cur) and tailored recombinant humanized collagen type III (rhCol III) in a controlled manner for myocardial repair. The excellent antioxidant and anti-inflammatory properties of Cur could effectively reduce the ROS level and cell apoptosis and inhibit inflammatory reactions after MI. The tailored rhCol III promoted cell proliferation, migration, and angiogenesis. The therapeutic hydrogel resulted in the rapid recovery of cardiac function after MI by elevating the expression of the cardiac markers α-actinin and CX 43. In vitro and in vivo data showed that the combined anti-apoptosis, anti-inflammatory and pro-angiogenesis treatment strategies were an auspicious tactic for the treatment of MI, and had significant clinical application value. Furthermore, the work also demonstrated the great application potential of our tailored rhCol III in promoting the repair and regeneration of infarcted hearts.


Assuntos
Hidrogéis , Infarto do Miocárdio , Humanos , Hidrogéis/farmacologia , Neovascularização Fisiológica , Regeneração , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
Carbohydr Polym ; 296: 119923, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087977

RESUMO

A reliable electrophysiological electrode interface (EEI) between bioelectronic devices and biological tissues is indispensable to achieve the high fidelity recording of bioelectricity. However, there is an inherent tradeoff among EEI's electrochemical characteristics, mechanical properties and biocompatibility when considering the desired nanostructure and optimum composition. Here, we proposed a mechanically matched, highly conductive and biocompatible EEI, a tissue-like metal-doped hydrogel which could enable excellent electro-biosensing, by bringing disulfide modified silver nanowires into difunctional hyaluronan/carboxymethyl chitosan composite. The intensity of cortical signals at specific frequency domain recorded by the hydrogel-based EEI is doubled, which is significant for the diagnosis of epilepsy. Furthermore, the natural gel matrix could lead to seamless bio-integration between EEI and the tissue site of interest, minimizing signal dissipation without causing obvious inflammatory response. Overall, the EEI we designed contributes to improving tissue-device integration as well as bioelectronic device's performance and further leads to more effective human-computer interfaces.


Assuntos
Hidrogéis , Nanofios , Eletrodos , Humanos , Hidrogéis/química , Polissacarídeos , Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...