Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Mol Med ; 53(2): 235-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558591

RESUMO

Dopamine D1 receptor (D1DR) and D2 receptor (D2DR) are closely associated with pain modulation, but their exact effects on neuropathic pain and the underlying mechanisms remain to be identified. Our research revealed that intrathecal administration of D1DR and D2DR antagonists inhibited D1-D2DR complex formation and ameliorated mechanical and thermal hypersensitivity in chronic constriction injury (CCI) rats. The D1-D2DR complex was formed in the rat spinal cord, and the antinociceptive effects of D1DR and D2DR antagonists could be reversed by D1DR, D2DR, and D1-D2DR agonists. Gαq, PLC, and IP3 inhibitors also alleviated CCI-induced neuropathic pain. D1DR, D2DR, and D1-D2DR complex agonists all increased the intracellular calcium concentration in primary cultured spinal neurons, and this increase could be reversed by D1DR, D2DR antagonists and Gαq, IP3, PLC inhibitors. D1DR and D2DR antagonists significantly reduced the expression of p-PKC γ, p-CaMKII, p-CREB, and p-MAPKs. Levo-corydalmine (l-CDL), a monomeric compound in Corydalis yanhusuo W.T. Wang, was found to obviously suppress the formation of the spinal D1-D2DR complex to alleviate neuropathic pain in CCI rats and to decrease the intracellular calcium concentration in spinal neurons. l-CDL-induced inhibition of p-PKC γ, p-MAPKs, p-CREB, and p-CaMKII was also reversed by D1DR, D2DR, and D1-D2DR complex agonists. In conclusion, these results indicate that D1DR and D2DR form a complex and in turn couple with the Gαq protein to increase neuronal excitability via PKC γ, CaMKII, MAPK, and CREB signaling in the spinal cords of CCI rats; thus, they may serve as potential drug targets for neuropathic pain therapy.


Assuntos
Neuralgia/etiologia , Neuralgia/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Células Receptoras Sensoriais/metabolismo , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Comportamento Animal , Biomarcadores , Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Antagonistas de Dopamina/farmacologia , Antagonistas dos Receptores de Dopamina D2/farmacologia , Masculino , Complexos Multiproteicos/metabolismo , Neuralgia/diagnóstico , Medição da Dor , Fosforilação , Ligação Proteica , Ratos , Receptores de Dopamina D1/antagonistas & inibidores , Transdução de Sinais , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico
2.
J Adv Res ; 28: 139-148, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33364051

RESUMO

INTRODUCTION: Spinal N-methyl-D-aspartate receptor (NMDAR) is vital in chronic pain, while NMDAR antagonists have severe side effects. NMDAR has been reported to be controlled by G protein coupled receptors (GPCRs), which might present new therapeutic targets to attenuate chronic pain. Dopamine receptors which belong to GPCRs have been reported could modulate the NMDA-mediated currents, while their exact effects on NMDAR in chronic bone cancer pain have not been elucidated. OBJECTIVES: This study was aim to explore the effects and mechanisms of dopamine D1 receptor (D1DR) and D2 receptor (D2DR) on NMDAR in chronic bone cancer pain. METHODS: A model for bone cancer pain was established using intra-tibia bone cavity tumor cell implantation (TCI) of Walker 256 in rats. The nociception was assessed by Von Frey assay. A range of techniques including the fluorescent imaging plate reader, western blotting, and immunofluorescence were used to detect cell signaling pathways. Primary cultures of spinal neurons were used for in vitro evaluation. RESULTS: Both D1DR and D2DR antagonists decreased NMDA-induced upregulation of Ca2+ oscillations in primary culture spinal neurons. Additionally, D1DR/D2DR antagonists inhibited spinal Calcitonin Gene-Related Peptide (CGRP) and c-Fos expression and alleviated bone cancer pain induced by TCI which could both be reversed by NMDA. And D1DR/D2DR antagonists decreased p-NR1, p-NR2B, and Gαq protein, p-Src expression. Both Gαq protein and Src inhibitors attenuated TCI-induced bone cancer pain, which also be reversed by NMDA. The Gαq protein inhibitor decreased p-Src expression. In addition, D1DR/D2DR antagonists, Src, and Gαq inhibitors inhibited spinal mitogen-activated protein kinase (MAPK) expression in TCI rats, which could be reversed by NMDA. CONCLUSIONS: Spinal D1DR/D2DR inhibition eliminated NMDAR-mediated spinal neuron activation through Src kinase in a Gαq-protein-dependent manner to attenuate TCI-induced bone cancer pain, which might present a new therapeutic strategy for bone cancer pain.

3.
Cell Commun Signal ; 18(1): 66, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32312253

RESUMO

BACKGROUND: Anti-nerve growth factor (NGF) monoclonal antibodies (anti-NGF mAbs) have been reported to significantly attenuate pain, but the mechanism involved has not been fully elucidated, and the serious adverse events associated with mAbs seriously limit their clinical use. This study further investigated the mechanism by which peripheral NGF is involved in neuropathic pain and found safe, natural compounds that target NGF to attenuate neuropathic pain. METHODS: Nociception was assessed by the Von Frey hair and Hargreaves' methods. Western-blotting, qPCR and immunofluorescence were used to detect the cell signaling pathway. RAW264.7 macrophages and RSC96 Schwann cells were cultured for in vitro evaluation. RESULTS: Intraplantar administration of anti-NGF mAbs suppressed the expression of phosphorylated transforming growth factor-ß-activated kinase 1 (TAK1) in the dorsal root ganglion (DRG) and sciatic nerve. Intraplantar administration of a TAK1 inhibitor attenuated CCI-induced neuropathic pain and suppressed the expression of phosphorylated mitogen-activated protein kinases (MAPKs) in the DRG and sciatic nerve. Perisciatic nerve administration of levo-corydalmine (l-CDL) on the operated side obviously attenuated CCI-induced neuropathic pain and suppressed the expression of mNGF and proNGF. In addition, l-CDL-induced antinociception was reversed by intraplantar administration of NGF. Further results indicated that l-CDL-induced suppression of phosphorylated TAK1, MAPKs, and p65 and expression of the proinflammatory cytokines TNF-α and IL-1ß in the DRG and sciatic nerve were all abolished by NGF. In addition, in vitro experiments indicated that l-CDL suppressed the secretion of NGF and proNGF in RAW264.7 macrophages and RSC96 Schwann cells, which was abolished by AP-1 and CREB agonists, respectively. CONCLUSIONS: This study showed NGF inhibition suppressed TAK1 in the periphery to attenuate CCI-induced neuropathic pain through inhibition of downstream MAPK and p65 signaling. The natural compound l-CDL inhibited NGF secretion by macrophages and Schwann cells and downstream TAK1-MAPK/NF-κB signaling in the periphery to attenuate CCI-induced neuropathic pain. Video abstract Proposed mechanisms underlying the effect of l-CDL in periphery of CCI rats. In CCI rats, macropahages and Schwann cells could secret NGF to act on the receptors in the periphery to activate TAK1-MAPK/NF-κB axis and promote the release of proinflammatory cytokines, including TNF-α and IL-1ß to promote neuropathic pain. l-CDL decreased the secretion of NGF through inhibiting AP-1 and CREB respectively in RAW264.7 and RSC96 Schwann cells to attenuate CCI-induced neuropathic pain by inhibiting the TAK1-p38 MAPK/NF-κB signaling pathway.


Assuntos
Anticorpos Monoclonais , MAP Quinase Quinase Quinases , Fator de Crescimento Neural , Neuralgia/tratamento farmacológico , Extratos Vegetais , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Corydalis/química , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Camundongos , Fator de Crescimento Neural/antagonistas & inibidores , Fator de Crescimento Neural/imunologia , Fator de Crescimento Neural/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
4.
Reg Anesth Pain Med ; 45(3): 219-229, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31898581

RESUMO

BACKGROUND AND OBJECTIVES: Neuropathic pain is partially refractory to currently available treatments. Although some studies have reported that apoptosis signal-regulating kinase 1 (ASK1) may inhibit chronic pain, the mechanisms underlying this process have not been fully elucidated. METHODS: Chronic constriction injury (CCI) of the rat sciatic nerve was used to establish a neuropathic pain model. Nociception was assessed using von Frey hair and Hargreaves' methods. Western blot and immunofluorescence were used to detect the cell signaling pathway. BV2 cell line was cultured for in vitro evaluation. RESULTS: Our results indicated that spinal ASK1 was co-expressed with the microglia marker ionized calcium binding adaptor 1. Additionally, intrathecal administration of ASK1 inhibitor suppressed the activation of spinal microglia and attenuated CCI-induced neuropathic pain. The ASK1 inhibitor also decreased the levels of phosphorylated ASK1 (p-ASK1), p65, p38 mitogen-activated protein kinase (MAPK) and tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß) messenger RNA in lipopolysaccharide-stimulated BV2 microglia cells. Intragastric administration of levo-corydalmine (l-CDL) significantly attenuated CCI-induced neuropathic pain and inhibited the expression of p-ASK1 in the spinal cord. l-CDL conspicuously suppressed the activation of spinal microglia in vitro and in vivo. Translocation of nuclearfactor-kappa B (NF-κB) and upregulation of p-p65, TNF-α, IL-1ß were inhibited by l-CDL. Further, the analgesic effects of l-CDL were associated with reduced levels of phosphorylated protein kinase C (PKC γ), c-JunNH2-terminal kinase, and extracellular signal-regulated kinase. CONCLUSIONS: This study showed that the expression of ASK1 in spinal microglia and ASK1 inhibitor suppressed microglia activation via suppression of p38 MAPK/NF-κB, which ultimately attenuated CCI-induced neuropathic pain. l-CDL also inhibited the ASK1-P38 MAPK/NF-κB axis to attenuate CCI-induced neuropathic pain.


Assuntos
Berberina/análogos & derivados , MAP Quinase Quinase Quinase 5/metabolismo , Microglia/metabolismo , NF-kappa B/metabolismo , Neuralgia/metabolismo , Medula Espinal/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Berberina/farmacologia , Interleucina-1beta/metabolismo , Masculino , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Nervo Isquiático , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...