Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
ACS Cent Sci ; 10(8): 1515-1523, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39220693

RESUMO

Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and has become increasingly resistant to multiple antibiotics. However, development of novel classes of antibacterial agents against multidrug-resistant P. aeruginosa is extremely difficult. Herein we develop a semisynthetic oligomannuronic acid-based glycoconjugate vaccine that confers broad protection against infections of both mucoid and nonmucoid strains of P. aeruginosa. The well-defined glycoconjugate vaccine formulated with Freund's adjuvant (FA) employing a highly conserved antigen elicited a strong and specific immune response and protected mice against both mucoid and nonmucoid strains of P. aeruginosa. The resulting antibodies recognized different strains of P. aeruginosa and mediated the opsonic killing of the bacteria at varied levels depending on the amount of alginate expressed on the surface of the strains. Vaccination with the glycoconjugate vaccine plus FA significantly promoted the pulmonary and blood clearance of the mucoid PAC1 strain of P. aeruginosa and considerably improved the survival rates of mice against the nonmucoid PAO1 strain of P. aeruginosa. Thus, the semisynthetic glycoconjugate is a promising vaccine that may provide broad protection against both types of P. aeruginosa.

2.
Nano Lett ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225632

RESUMO

As a nonenzymatic DNA signal amplification technique, localized hybridization chain reaction (LHCR) was designed to improve the limitations in response speed and low sensitivity of conventional free diffusional HCR (hybridization chain reaction). However, it is still confronted with the challenges of complicated DNA scaffolds with low loading capacity and a time-consuming process of diffusion. Herein, we introduced modular assembly of a DNA minimal scaffold for coassembly of DNA hairpins for amplified fluorescence imaging of mRNA in situ. DNA hairpins were spatially bound to two Y-shaped modules to form H-shaped DNA modules, and then multiple H-shaped DNA modules can further assemble into an H-module-based hairpin scaffold (HHS). Benefiting from highly spatial localization and high loading capacity, the HHS system showed higher sensitivity and faster speed. It has also been proven to work perfectly in vitro and in vivo, which could provide a promising bioanalysis system for low abundance biomolecule detection.

3.
Front Optoelectron ; 17(1): 29, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150587

RESUMO

A Mueller matrix covers all the polarization information of the measured sample, however the combination of its 16 elements is sometimes not intuitive enough to describe and identify the key characteristics of polarization changes. Within the Poincaré sphere system, this study achieves a spatial representation of the Mueller matrix: the Global-Polarization Stokes Ellipsoid (GPSE). With the help of Monte Carlo simulations combined with anisotropic tissue models, three basic characteristic parameters of GPSE are proposed and explained, where the V parameter represents polarization maintenance ability, and the E and D† parameters represent the degree of anisotropy. Furthermore, based on GPSE system, a dynamic analysis of skeletal muscle dehydration process demonstrates the monitoring effect of GPSE from an application perspective, while confirming its robustness and accuracy.

4.
Light Sci Appl ; 13(1): 163, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004616

RESUMO

Quantum entanglement has emerged as a great resource for studying the interactions between molecules and radiation. We propose a new scheme of stimulated Raman scattering with entangled photons. A quantum ultrafast Raman spectroscopy is developed for condensed-phase molecules, to monitor the exciton populations and coherences. Analytic results are obtained, showing an entanglement-enabled time-frequency scale not attainable by classical light. The Raman signal presents an unprecedented selectivity of molecular correlation functions, as a result of the Hong-Ou-Mandel interference. Our work suggests a new paradigm of using an unconventional interferometer as part of spectroscopy, with the potential to unveil advanced information about complex materials.

5.
Front Microbiol ; 15: 1433664, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050632

RESUMO

Myricetin, a natural flavonoid found in various foods, was investigated for its antiviral effect against transmissible gastroenteritis virus (TGEV). This α-coronavirus causes significant economic losses in the global swine industry. The study focused on the papain-like protease (PLpro), which plays a crucial role in coronavirus immune evasion by mediating deubiquitination. Targeting PLpro could potentially disrupt viral replication and enhance antiviral responses. The results demonstrated that myricetin effectively inhibited TGEV-induced cytopathic effects in a dose-dependent manner, with an EC50 value of 31.19 µM. Myricetin significantly reduced TGEV viral load within 48 h after an 8-h co-incubation period. Further investigations revealed that myricetin at a concentration of 100 µM directly inactivated TGEV and suppressed its intracellular replication stage. Moreover, pretreatment with 100 µM myricetin conferred a protective effect on PK-15 cells against TGEV infection. Myricetin competitively inhibited PLpro with an IC50 value of 6.563 µM. Molecular docking experiments show that myricetin binds to the Cys102 residue of PLpro through conventional hydrogen bonds, Pi-sulfur, and Pi-alkyl interactions. This binding was confirmed through site-directed mutagenesis experiments, indicating myricetin as a potential candidate for preventing and treating TGEV infection.

6.
Front Vet Sci ; 11: 1382288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863452

RESUMO

Pullorum disease (PD) is a bacterial infection caused by Salmonella pullorum (S. pullorum) that affects poultry. It is highly infectious and often fatal. Antibiotics are currently the mainstay of prophylactic and therapeutic treatments for PD, but their use can lead to the development of resistance in pathogenic bacteria and disruption of the host's intestinal flora. We added neomycin sulfate and different doses of tannic acid (TA) to the drinking water of chicks at 3 days of age and infected them with PD by intraperitoneal injection of S. pullorum at 9 days of age. We analyzed intestinal histopathological changes and the expression of immune-related genes and proteins by using the plate smear method, histological staining, real-time fluorescence quantitative PCR, ELISA kits, and 16S rRNA Analysis of intestinal flora. The results demonstrate that S. pullorum induces alterations in the immune status and impairs the functionality of the liver and intestinal barrier. We found that tannic acid significantly ameliorated S. pullorum-induced liver and intestinal damage, protected the intestinal physical and chemical barriers, restored the intestinal immune barrier function, and regulated the intestinal flora. Our results showed that TA has good anti-diarrhoeal, growth-promoting, immune-regulating, intestinal barrier-protecting and intestinal flora-balancing effects, and the best effect was achieved at an additive dose of 0.2%.

7.
IEEE J Biomed Health Inform ; 28(7): 3907-3917, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38568770

RESUMO

Existing electromyographic (EMG) based motor intent detection algorithms are typically user-specific, and a generic model that can quickly adapt to new users is highly desirable. However, establishing such a model remains a challenge due to high inter-person variability and external interference with EMG signals. In this study, we present a feature disentanglement approach, implemented by an autoencoder-like architecture, designed to decompose user-invariant, motor-task-sensitive high-level representations from user-sensitive, task-irrelevant representations in EMG amplitude features. Our method is user-generic and can be applied to unseen users for continuous multi-finger force predictions. We evaluated our approach on eight subjects, predicting the force of three fingers (index, middle, and ring-pinky) concurrently. We assessed the decoder's performance through a rigorous leave-one-subject-out validation. Our developed approach consistently outperformed both the conventional EMG amplitude method and a commonly used feature projection approach, principal component analysis (PCA), with a lower force prediction error (RMSE: 6.91 ± 0.45 % MVC; R2: 0.835 ± 0.026) and a higher finger classification accuracy (83.0 ± 4.5%). The comparison with the state-of-the-art neural networks further demonstrated the superior performance of our method in user-generic force predictions. Overall, our methods provide novel insights into the development of user-generic and accurate neural decoding for myoelectric control of assistive robotic hands.


Assuntos
Algoritmos , Eletromiografia , Dedos , Processamento de Sinais Assistido por Computador , Humanos , Eletromiografia/métodos , Dedos/fisiologia , Masculino , Adulto , Feminino , Adulto Jovem
8.
Int J Biol Macromol ; 265(Pt 2): 130988, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518942

RESUMO

Codonopsis pilosula is a famous edible and medicinal plants, in which polysaccharides are recognized as one of the important active ingredients. A neutral polysaccharide (CPP-1) was purified from C. pilosula. The structure was characterized by HPSEC-MALLS-RID, UV, FT-IR, GC-MS, methylation analysis, and NMR. The results showed that CPP-1 was a homogeneous pure polysaccharide, mainly containing fructose and glucose, and a small amount of arabinose. Methylation analysis showed that CPP-1 composed of →1)-Fruf-(2→, Fruf-(1→ and Glcp-(1→ residues. Combined the NMR results the structure of CPP-1 was confirmed as α-D-Glcp-(1 â†’ [2)-ß-D-Fruf-(1 â†’ 2)-ß-D-Fruf-(1]26 â†’ 2)-ß-D-Fruf with the molecular weight of 4.890 × 103 Da. The model of AML12 hepatocyte fat damage was established in vitro. The results showed that CPP-1 could increase the activity of SOD and CAT antioxidant enzymes and reduce the content of MDA, thus protecting cells from oxidative damage. Subsequently, the liver protective effect of CPP-1 was studied in the mouse model of nonalcoholic fatty liver disease (NAFLD) induced by the high-fat diet. The results showed that CPP-1 significantly reduced the body weight, liver index, and body fat index of NAFLD mice, and significantly improved liver function. Therefore, CPP-1 should be a potential candidate for the treatment of NAFLD.


Assuntos
Codonopsis , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Codonopsis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Antioxidantes/farmacologia
9.
IEEE Trans Biomed Eng ; 71(6): 1831-1840, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38215325

RESUMO

OBJECTIVE: Dexterous control of robot hands requires a robust neural-machine interface capable of accurately decoding multiple finger movements. Existing studies primarily focus on single-finger movement or rely heavily on multi-finger data for decoder training, which requires large datasets and high computation demand. In this study, we investigated the feasibility of using limited single-finger surface electromyogram (sEMG) data to train a neural decoder capable of predicting the forces of unseen multi-finger combinations. METHODS: We developed a deep forest-based neural decoder to concurrently predict the extension and flexion forces of three fingers (index, middle, and ring-pinky). We trained the model using varying amounts of high-density EMG data in a limited condition (i.e., single-finger data). RESULTS: We showed that the deep forest decoder could achieve consistently commendable performance with 7.0% of force prediction errors and R2 value of 0.874, significantly surpassing the conventional EMG amplitude method and convolutional neural network approach. However, the deep forest decoder accuracy degraded when a smaller amount of data was used for training and when the testing data became noisy. CONCLUSION: The deep forest decoder shows accurate performance in multi-finger force prediction tasks. The efficiency aspect of the deep forest lies in the short training time and small volume of training data, which are two critical factors in current neural decoding applications. SIGNIFICANCE: This study offers insights into efficient and accurate neural decoder training for advanced robotic hand control, which has the potential for real-life applications during human-machine interactions.


Assuntos
Eletromiografia , Dedos , Redes Neurais de Computação , Humanos , Dedos/fisiologia , Eletromiografia/métodos , Masculino , Adulto , Feminino , Robótica/métodos , Adulto Jovem , Processamento de Sinais Assistido por Computador , Aprendizado Profundo
10.
Exp Cell Res ; 435(1): 113909, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184221

RESUMO

Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4. Our results indicated that LPS (1 µg/ml) challenge resulted in either the production and releasing of DPP-4, as well as the secretion of IL-6 and IL-8 in HPMECs. DPP-4 knockdown inhibited chemokine releasing and monolayer hyper-permeability in LPS challenged HPMECs. When cocultured with human polymorphonuclear neutrophils (PMNs), DPP4 knockdown suppressed LPS-induced neutrophil-endothelial adhesion, PMN chemotaxis and trans-endothelial migration. Western blotting showed that DPP-4 knockdown attenuated LPS-induced activation of TLR4/NF-κB pathway. Immunoprecipitation and liquid chromatography-tandem mass spectrometry revealed that DPP-4 mediated LPS-induced endothelial inflammation by interacting with integrin-α5ß1. Moreover, exogenous soluble DPP-4 treatment sufficiently activated integrin-α5ß1 downstream FAK/AKT/NF-κB signaling, thereafter inducing ICAM-1 upregulation in HPMECs. Collectively, our results suggest that endothelia synthesis and release DPP-4 under the stress of endotoxin, which interact with integrin-α5ß1 complex in an autocrine or paracrine manner to exacerbate endothelial inflammation and enhance endothelial cell permeability. Therefore, blocking DDP-4 could be a potential therapeutic strategy to prevent endothelial dysfunction in ALI/ARDS.


Assuntos
Células Endoteliais , Síndrome do Desconforto Respiratório , Humanos , Células Endoteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Integrina alfa5beta1/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Desconforto Respiratório/patologia
11.
Int J Mol Med ; 53(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38240085

RESUMO

NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle­induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica­treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme­linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time­dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane­distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial­mesenchymal transition (decreased E­Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma­associated oncogene (Shh/Gli) and Wnt/ß­catenin pathways were involved in NLRP3 inflammasome activation­mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle­related chronic inflammatory and fibrotic lung disease.


Assuntos
Fibrose Pulmonar , Silicose , Camundongos , Animais , Inflamassomos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dióxido de Silício/toxicidade , Proteínas NLR , Proteínas Hedgehog , Pulmão/patologia , Silicose/patologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-38088999

RESUMO

Gaze estimation, as a technique that reflects individual attention, can be used for disability assistance and assisting physicians in diagnosing diseases such as autism spectrum disorder (ASD), Parkinson's disease, and attention deficit hyperactivity disorder (ADHD). Various techniques have been proposed for gaze estimation and achieved high resolution. Among these approaches, electrooculography (EOG)-based gaze estimation, as an economical and effective method, offers a promising solution for practical applications. OBJECTIVE: In this paper, we systematically investigated the possible EOG electrode locations which are spatially distributed around the orbital cavity. Afterward, quantities of informative features to characterize physiological information of eye movement from the temporal-spectral domain are extracted from the seven differential channels. METHODS AND PROCEDURES: To select the optimum channels and relevant features, and eliminate irrelevant information, a heuristical search algorithm (i.e., forward stepwise strategy) is applied. Subsequently, a comparative analysis of the impacts of electrode placement and feature contributions on gaze estimation is evaluated via 6 classic models with 18 subjects. RESULTS: Experimental results showed that the promising performance was achieved both in the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) within a wide gaze that ranges from -50° to +50°. The MAE and RMSE can be improved to 2.80° and 3.74° ultimately, while only using 10 features extracted from 2 channels. Compared with the prevailing EOG-based techniques, the performance improvement of MAE and RMSE range from 0.70° to 5.48° and 0.66° to 5.42°, respectively. CONCLUSION: We proposed a robust EOG-based gaze estimation approach by systematically investigating the optimal channel/feature combination. The experimental results indicated not only the superiority of the proposed approach but also its potential for clinical application. Clinical and translational impact statement: Accurate gaze estimation is a key step for assisting disabilities and accurate diagnosis of various diseases including ASD, Parkinson's disease, and ADHD. The proposed approach can accurately estimate the points of gaze via EOG signals, and thus has the potential for various related medical applications.


Assuntos
Transtorno do Espectro Autista , Doença de Parkinson , Humanos , Eletroculografia/métodos , Transtorno do Espectro Autista/diagnóstico , Doença de Parkinson/diagnóstico , Movimentos Oculares , Eletrodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38083054

RESUMO

Neuromuscular injuries can impair hand function and profoundly impacting the quality of life. This has motivated the development of advanced assistive robotic hands. However, the current neural decoder systems are limited in their ability to provide dexterous control of these robotic hands. In this study, we propose a novel method for predicting the extension and flexion force of three individual fingers concurrently using high-density electromyogram (HD-EMG) signals. Our method employs two deep forest models, the flexor decoder and the extensor decoder, to extract relevant representations from the EMG amplitude features. The outputs of the two decoders are integrated through linear regression to predict the forces of the three fingers. The proposed method was evaluated on data from three subjects and the results showed that it consistently outperforms the conventional EMG amplitude-based approach in terms of prediction error and robustness across both target and non-target fingers. This work presents a promising neural decoding approach for intuitive and dexterous control of the fingertip forces of assistive robotic hands.


Assuntos
Qualidade de Vida , Robótica , Humanos , Dedos , Mãos , Eletromiografia/métodos
14.
Comput Biol Med ; 167: 107604, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37883851

RESUMO

With the joint advancement in areas such as pervasive neural data sensing, neural computing, neuromodulation and artificial intelligence, neural interface has become a promising technology facilitating both the closed-loop neurorehabilitation for neurologically impaired patients and the intelligent man-machine interactions for general application purposes. However, although neural interface has been widely studied, few previous studies focused on the cybersecurity issues in related applications. In this survey, we systematically investigated possible cybersecurity risks in neural interfaces, together with potential solutions to these problems. Importantly, our survey considers interfacing techniques on both central nervous systems (i.e., brain-computer interfaces) and peripheral nervous systems (i.e., general neural interfaces), covering diverse neural modalities such as electroencephalography, electromyography and more. Moreover, our survey is organized on three different levels: (1) the data level, which mainly focuses on the privacy leakage issue via attacking and analyzing neural database of users; (2) the permission level, which mainly focuses on the prospects and risks to directly use real time neural signals as biometrics for continuous and unobtrusive user identity verification; and (3) the model level, which mainly focuses on adversarial attacks and defenses on both the forward neural decoding models (e.g. via machine learning) and the backward feedback implementation models (e.g. via neuromodulation and stimulation). This is the first study to systematically investigate cybersecurity risks and possible solutions in neural interfaces which covers both central and peripheral nervous systems, and considers multiple different levels to provide a complete picture of this issue.


Assuntos
Inteligência Artificial , Interfaces Cérebro-Computador , Humanos , Segurança Computacional , Eletromiografia , Sistema Nervoso
15.
Appl Opt ; 62(19): 5267-5275, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707231

RESUMO

In this paper, a phase error compensation method based on a probability distribution function (PDF) is proposed to improve the accuracy of phase extraction, which is helpful for three-dimensional (3D) reconstruction. First, the relationship between the gamma and the gray values is established to segment the projection regions. Then a new method based on a PDF is designed to represent the variation degree of phase error, which fits the precoded gamma value in the minimum range of the phase error. After that, the error compensation method is applied to the self-built system and packaged independently from the 3D reconstruction system to unwrap phases with high precision. The experimental results show that the proposed method can reduce the standard deviation of the phase error by 46.9% compared without phase error compensation, and decrease the standard deviation of the phase error by 30% compared with the whole precoding. Generally, our method can effectively avoid overcompensation or under-compensation caused by single global gamma precoding correction, and better reduce the phase error and improve the 3D reconstruction accuracy in the fringe projection system.

16.
Zhongguo Gu Shang ; 36(8): 743-7, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37605913

RESUMO

OBJECTIVE: To explore clinical effect of high-intensity laser therapy(HILT) combined with targeted hand function training on pain and lateral pinch force in grade 1-2 thumb carpometacarpal(CMC) osteoarthritis(OA). METHODS: From April 2020 and April 2022, 42 female patients with thumb CMC OA grade 1 to 2, aged from 58 to 80 years old with an everage of (68.90±7.58) years old were divided into observation group of 21 patients who received HILT and targeted hand function training for 4 weeks, and 21 patients in control group who received ultrashort wave therapy combined with using of an orthosis for 4 weeks. Visual analogue scale(VAS) was applied to evaluate degree of pain, function of finger was evaluated by dynamometer to measure lateral pinch force at baseline, immediately following intervention at 4 and 12 weeks following intervention. RESULTS: VAS and lateral pinch force at immediately and 12 weeks after intervention betwwen two groups were better than that of before intervention(P<0.05). Compared with control group, the degree of pain in observation group improved more(immediately after intervention t=3.37, P<0.05, 12 weeks after intervention t=9.05, P<0.05), lateral pinch force higher than that of control group (immediately after intervention t=-2.55, P<0.05, 12 weeks after intervention t=9.51, P<0.05). CONCLUSION: High-intensity laser therapy combined with targeted hand function training is more effective than traditional methods in improving pain and lateral pinch force in grade 1-2 thumb carpometacarpal osteoarthritis.


Assuntos
Terapia a Laser , Osteoartrite , Humanos , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Polegar , Braquetes , Osteoartrite/terapia , Dor
17.
Front Oncol ; 13: 1170923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434986

RESUMO

Background: Advanced hepatocellular carcinoma (HCC) is characterized as symptomatic tumors [performance status (PS) score of 1-2], vascular invasion and extrahepatic spread, but patients with PS1 alone may be eliminated from this stage. Although liver resection is used for liver-confined HCC, its role in patients with PS1 alone remains controversial. Therefore, we aimed to explore its application in such patients and identify potential candidates. Methods: Eligible liver-confined HCC patients undergoing liver resection were retrospectively screened in 15 Chinese tertiary hospitals, with limited tumor burden, liver function and PS scores. Cox-regression survival analysis was used to investigate the prognostic factors and develop a risk-scoring system, according to which patients were substratified using fitting curves and the predictive values of PS were explored in each stratification. Results: From January 2010 to October 2021, 1535 consecutive patients were selected. In the whole cohort, PS, AFP, tumor size and albumin were correlated with survival (adjusted P<0.05), based on which risk scores of every patient were calculated and ranged from 0 to 18. Fitting curve analysis demonstrated that the prognostic abilities of PS varied with risk scores and that the patients should be divided into three risk stratifications. Importantly, in the low-risk stratification, PS lost its prognostic value, and patients with PS1 alone achieved a satisfactory 5-year survival rate of 78.0%, which was comparable with that PS0 patients (84.6%). Conclusion: Selected patients with PS1 alone and an ideal baseline condition may benefit from liver resection and may migrate forward to BCLC stage A.

18.
Comput Biol Med ; 162: 107139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37301095

RESUMO

BACKGROUND: Manual dexterity is a fundamental motor skill that allows us to perform complex daily tasks. Neuromuscular injuries, however, can lead to the loss of hand dexterity. Although numerous advanced assistive robotic hands have been developed, we still lack dexterous and continuous control of multiple degrees of freedom in real-time. In this study, we developed an efficient and robust neural decoding approach that can continuously decode intended finger dynamic movements for real-time control of a prosthetic hand. METHODS: High-density electromyogram (HD-EMG) signals were obtained from the extrinsic finger flexor and extensor muscles, while participants performed either single-finger or multi-finger flexion-extension movements. We implemented a deep learning-based neural network approach to learn the mapping from HD-EMG features to finger-specific population motoneuron firing frequency (i.e., neural-drive signals). The neural-drive signals reflected motor commands specific to individual fingers. The predicted neural-drive signals were then used to continuously control the fingers (index, middle, and ring) of a prosthetic hand in real-time. RESULTS: Our developed neural-drive decoder could consistently and accurately predict joint angles with significantly lower prediction errors across single-finger and multi-finger tasks, compared with a deep learning model directly trained on finger force signals and the conventional EMG-amplitude estimate. The decoder performance was stable over time and was robust to variations of the EMG signals. The decoder also demonstrated a substantially better finger separation with minimal predicted error of joint angle in the unintended fingers. CONCLUSIONS: This neural decoding technique offers a novel and efficient neural-machine interface that can consistently predict robotic finger kinematics with high accuracy, which can enable dexterous control of assistive robotic hands.


Assuntos
Procedimentos Cirúrgicos Robóticos , Humanos , Fenômenos Biomecânicos , Mãos/fisiologia , Dedos/fisiologia , Eletromiografia/métodos , Movimento/fisiologia
19.
Int J Pharm ; 642: 123102, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37277087

RESUMO

The inflammatory response is the basis of many diseases, such as atherosclerosis and ulcerative colitis. Inhibiting inflammatory response is the key to treating these diseases. Berberine hydrochloride (BBR), a natural product, has shown effective inflammation inhibitory activity. However, its distribution throughout the body results in a variety of serious side effects. Currently, there is a lack of targeted delivery systems for BBR to inflammatory sites. In view of the fact that the recruitment of inflammatory cells by activated vascular endothelial cells is a key step in inflammation development. Here, we design a system that can specifically deliver berberine to activated vascular endothelial cells. Low molecular weight fucoidan (LMWF), which can specifically bind to P-selectin, was coupled to PEGylated liposomes (LMWF-Lip), and BBR is encapsulated into LMWF-Lip (LMWF-Lip/BBR). In vitro, LMWF-Lip significantly increases the uptake by activated human umbilical vein endothelial cells (HUVEC). Injection of LMWF-Lip into the tail vein of rats can effectively accumulate in the swollen part of the foot, where it is internalized by the characteristics of activated vascular endothelial cells. LMWF-Lip/BBR can effectively inhibit the expression of P-selectin in activated vascular endothelial cells, and reduce the degree of foot edema and inflammatory response. In addition, compared with free BBR, the toxicity of BBR in LMWF-Lip/BBR to main organs was significantly reduced. These results suggest that wrapping BBR in LMWF-Lip can improve efficacy and reduce its systemic toxicity as a potential treatment for various diseases caused by inflammatory responses.


Assuntos
Antineoplásicos , Berberina , Ratos , Humanos , Animais , Berberina/farmacologia , Berberina/uso terapêutico , Selectina-P/uso terapêutico , Peso Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/uso terapêutico
20.
Small ; 19(22): e2300469, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855777

RESUMO

Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA