Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39037207

RESUMO

The insect order Blattodea (cockroaches and termites) has drawn substantial research attention for their dietary habits and lifestyle of living with or around humans. In the present study, we focused on the discovery of RNA viruses hidden in Blattodea insects using the publicly available RNA sequencing datasets. Overall, 136 distinctive RNA viruses were identified from 36 Blattodea species, of which more than 70 % were most closely related to the invertebrate-associated viral groups within Picornavirales, Sobelivirales, Bunyaviricetes, Jingchuvirales, Durnavirales, Lispiviridae, Orthomyxoviridae, Permutotetraviridae, Flaviviridae and Muvirales. Several viruses were associated with pathogens of vertebrates (Paramyxoviridae), plants (Tymovirales), protozoa (Totiviridae), fungi (Narnaviridae) and bacteria (Norzivirales). Collectively, 93 complete or near-complete viral genomes were retrieved from the datasets, and several viruses appeared to have remarkable temporal and spatial distributions. Interestingly, the newly identified Periplaneta americana dicistrovirus displayed a remarkable distinct bicistronic genome arrangement from the well-recognized dicistroviruses with the translocated structural and non-structural polyprotein encoding open reading frames over the genome. These results significantly enhance our knowledge of RNA virosphere in Blattodea insects, and the novel genome architectures in dicistroviruses and other RNA viruses may break our stereotypes in the understanding of the genomic evolution and the emergence of potential novel viral species.


Assuntos
Baratas , Genoma Viral , Isópteros , Filogenia , Vírus de RNA , Animais , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de RNA/classificação , Isópteros/virologia , Baratas/virologia , Vírus de Insetos/genética , Vírus de Insetos/classificação , Vírus de Insetos/isolamento & purificação
2.
Virulence ; 15(1): 2301246, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38170683

RESUMO

Streptococcus suis (S. suis), a significant zoonotic bacterial pathogen impacting swine and human, is associated with severe systemic diseases such as streptococcal toxic shock-like syndrome, meningitis, septicaemia, and abrupt fatality. The multifaceted roles of complement components C5a and C3a extend to orchestrating inflammatory cells recruitment, oxidative burst induction, and cytokines release. Despite the pivotal role of subtilisin-like serine proteases in S. suis pathogenicity, their involvement in immune evasion remains underexplored. In the present study, we identify two cell wall-anchored subtilisin-like serine proteases in S. suis, SspA-1 and SspA-2, as binding partners for C3a and C5a. Through Co-Immunoprecipitation, Enzyme-Linked Immunosorbent and Far-Western Blotting Assays, we validate their interactions with the aforementioned components. However, SspA-1 and SspA-2 have no cleavage activity against complement C3a and C5a performed by Cleavage assay. Chemotaxis assays reveal that recombinant SspA-1 and SspA-2 effectively attenuate monocyte chemotaxis towards C3a and C5a. Notably, the ΔsspA-1, ΔsspA-1, and ΔsspA-1/2 mutant strains exhibit compromised survival in blood, and resistance of opsonophagocytosis, alongside impaired survival in blood and in vivo colonization compared to the parental strain SC-19. Critical insights from the murine and Galleria mellonella larva infection models further underscore the significance of sspA-1 in altering mortality rates. Collectively, our findings indicate that SspA-1 and SspA-2 are novel binding proteins for C3a and C5a, thereby shedding light on their pivotal roles in S. suis immune evasion and the pathogenesis.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Animais , Humanos , Suínos , Camundongos , Evasão da Resposta Imune , Complemento C3a , Streptococcus suis/metabolismo , Citocinas , Subtilisinas/metabolismo , Infecções Estreptocócicas/microbiologia
3.
Comput Struct Biotechnol J ; 21: 2759-2766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181661

RESUMO

Macrolides are currently a class of extensively used antibiotics in human and animal medicine. Tylosin is not only one of the most important veterinary macrolides but also an indispensable material for the bio- and chemo-synthesis of new generations of macrolide antibiotics. Thus, improving its production yield is of great value. As the key rate-limiting enzyme catalyzing the terminal step of tylosin biosynthesis in Streptomyces fradiae (S. fradiae), TylF methyltransferase's catalytic activity directly affects tylosin yield. In this study, a tylF mutant library of S. fradiae SF-3 was constructed based on error-prone PCR technology. After two steps of screening in 24-well plates and conical flask fermentation and enzyme activity assay, a mutant strain was identified with higher TylF activity and tylosin yield. The mutation of tyrosine to phenylalanine is localized at the 139th amino acid residue on TylF (TylFY139F), and protein structure simulations demonstrated that this mutation changed the protein structure of TylF. Compared with wild-type protein TylF, TylFY139F exhibited higher enzymatic activity and thermostability. More importantly, the Y139 residue in TylF is a previously unidentified position required for TylF activity and tylosin production in S. fradiae, indicating the further potential to engineer the enzyme. These findings provide helpful information for the directed molecular evolution of this important enzyme and the genetic modification of tylosin-producing bacteria.

4.
J Microbiol Biotechnol ; 33(6): 831-839, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36994618

RESUMO

Tylosin is a potent veterinary macrolide antibiotic produced by the fermentation of Streptomyces fradiae; however, it is necessary to modify S. fradiae strains to improve tylosin production. In this study, we established a high-throughput, 24-well plate screening method for identifying S. fradiae strains that produce increased yields of tylosin. Additionally, we constructed mutant libraries of S. fradiae via ultraviolet (UV) irradiation and/or sodium nitrite mutagenesis. A primary screening of the libraries in 24-well plates and UV spectrophotometry identified S. fradiae mutants producing increased yields of tylosin. Mutants with tylosin yield 10% higher than the wild-type strain were inoculated into shake flasks, and the tylosin concentrations produced were determined by high-performance liquid chromatography (HPLC). Joint (UV irradiation and sodium nitrite) mutagenesis resulted in higher yields of mutants with enhanced tylosin production. Finally, 10 mutants showing higher tylosin yield were re-screened in shake flasks. The yield of tylosin A by strains UN-C183 (6767.64 ± 82.43 µg/ml) and UN-C137 (6889.72 ± 70.25 µg/ml) was significantly higher than that of the wild-type strain (6617.99 ± 22.67 µg/ml). These mutant strains will form the basis for further strain breeding in tylosin production.


Assuntos
Nitrito de Sódio , Tilosina , Mutagênese , Antibacterianos
5.
Microbiol Spectr ; : e0421322, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815781

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.

6.
Inorg Chem ; 61(51): 20834-20847, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36520143

RESUMO

The selective photoreactions under mild conditions play an important role in synthetic chemistry. Herein, efficient and mild protocols for switching the photoreactions of Ir(III)-diamine complexes between the interligand C-N coupling and dehydrogenation are developed in the presence of O2 in EtOH solution. The photoreactions of achiral diamine complexes rac-[Ir(L)2(dm)](PF6) (L is 2-phenylquinoline or 2-(2,4-difluorophenyl)quinoline, dm is 1,2-ethylenediamine, 1,2-diaminopropane, 2-methyl-1,2-diamino-propane, or N,N'-dimethyl-1,2-ethylenediamine) are competitive in the oxidative C-N coupling and dehydrogenation at room temperature, which can be switched into the interligand C-N coupling reaction at 60 °C, affording hexadentate complexes in good to excellent yields, or the dehydrogenative reaction in the presence of a catalytic amount of TEMPO as an additive, affording imine complexes. Mechanism studies reveal that 1O2 is the major reactive oxygen species, and metal aminyl is the key intermediate in the formation of the oxidative C-N coupling and imine products in the photoreaction processes. These will provide a new and practical protocol for the synthesis of multidentate and imine ligands in situ via the postcoordinated strategy under mild conditions.

7.
Microorganisms ; 10(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630313

RESUMO

Streptococcus suis (S. suis) is a zoonotic bacterial pathogen causing lethal infections in pigs and humans. Identification of virulence-related genes (VRGs) is of great importance in understanding the pathobiology of a bacterial pathogen. To identify novel VRGs, a transposon (Tn) mutant library of S. suis strain SC19 was constructed in this study. The insertion sites of approximately 1700 mutants were identified by Tn-seq, which involved 417 different genes. A total of 32 attenuated strains were identified from the library by using a Galleria mellonella larvae infection model, and 30 novel VRGs were discovered, including transcription regulators, transporters, hypothetical proteins, etc. An isogenic deletion mutant of hxtR gene (ΔhxtR) and its complementary strain (CΔhxtR) were constructed, and their virulence was compared with the wild-type strain in G. mellonella larvae and mice, which showed that disruption of hxtR significantly attenuated the virulence. Moreover, the ΔhxtR strain displayed a reduced survival ability in whole blood, increased sensitivity to phagocytosis, increased chain length, and growth defect. Taken together, this study performed a high throughput screening for VRGs of S. suis using a G. mellonella larvae model and further characterized a novel critical virulence factor.

8.
Antibiotics (Basel) ; 11(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326881

RESUMO

Antimicrobial resistance (AMR) poses a huge threat to public health. The development of novel antibiotics is an effective strategy to tackle AMR. Cyclic diadenylate monophosphate (c-di-AMP) has recently been identified as an essential signal molecule for some important bacterial pathogens involved in various bacterial physiological processes, leading to its synthase diadenylate cyclase becoming an attractive antimicrobial drug target. In this study, based on the enzymatic activity of diadenylate cyclase of Streptococcus suis (ssDacA), we established a high-throughput method of screening for ssDacA inhibitors. Primary screening with a compound library containing 1133 compounds identified IPA-3 (2,2'-dihydroxy-1,1'-dinapthyldisulfide) as an ssDacA inhibitor. High-performance liquid chromatography (HPLC) analysis further indicated that IPA-3 could inhibit the production of c-di-AMP by ssDacA in vitro in a dose-dependent manner. Notably, it was demonstrated that IPA-3 could significantly inhibit the growth of several Gram-positive bacteria which harbor an essential diadenylate cyclase but not E. coli, which is devoid of the enzyme, or Streptococcus mutans, in which the diadenylate cyclase is not essential. Additionally, the binding site in ssDacA for IPA-3 was predicted by molecular docking, and contains residues that are relatively conserved in diadenylate cyclase of Gram-positive bacteria. Collectively, our results illustrate the feasibility of ssDacA as an antimicrobial target and consider IPA-3 as a promising starting point for the development of a novel antibacterial.

9.
Adv Sci (Weinh) ; 9(4): e2103388, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34894204

RESUMO

There has been increasing concern that the overuse of antibiotics in livestock farming is contributing to the burden of antimicrobial resistance in people. Farmed animals in Europe and North America, particularly pigs, provide a reservoir for livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA ST398 lineage) found in people. This study is designed to investigate the contribution of MRSA from Chinese pig farms to human infection. A collection of 483 MRSA are isolated from 55 farms and 4 hospitals in central China, a high pig farming density area. CC9 MRSA accounts for 97.2% of all farm isolates, but is not present in hospital isolates. ST398 isolates are found on farms and hospitals, but none of them formed part of the "LA-MRSA ST398 lineage" present in Europe and North America. The hospital ST398 MRSA isolate form a clade that is clearly separate from the farm ST398 isolates. Despite the presence of high levels of MRSA found on Chinese pig farms, the authors find no evidence of them spilling over to the human population. Nevertheless, the ST398 MRSA obtained from hospitals appear to be part of a widely distributed lineage in China. The new animal-adapted ST398 lineage that has emerged in China is of concern.


Assuntos
Fazendas/estatística & dados numéricos , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Infecções Estafilocócicas/epidemiologia , Doenças dos Suínos/epidemiologia , Grupos de População Animal , Animais , China/epidemiologia , Humanos , Suínos
10.
Biol Res ; 52(1): 37, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319879

RESUMO

BACKGROUND: Berberine (BBR), a compound extracted from a variety of medicinal herbs, has been shown multiple pharmacological effects against cancer cells of different origins. Cisplatin (DDP) is known as an effective chemotherapeutic agent against cancer by inducing DNA damage and cell apoptosis. However, the effect of the combined used of BBR and DDP on cell necroptosis in ovarian cancer has not been reported. METHODS: OVCAR3 and three patient-derived primary ovarian cancer cell lines (POCCLs) were chosen as the experimental objects. To determine the potential anti-cancer activity of BBR and DDP in combination, we firstly treated OVCAR3 and POCCLs cells with BBR and/or DDP. The cell viability of OVCAR3 and POCCLs with treatment of BBR or DDP for different hours was measured by CCK-8 assay. Flow cytometry was used to analyze cell cycle distribution and changes in apoptotic cells after treatment with BBR and/or DDP. The morphological changes of OVCAR3 cells were observed by using Transmission electron microscopy (TEM) analysis. Proliferation, apoptosis and necroptosis related markers of OVCAR3 and POCCLs with treatment of BBR or DDP were measured by RT-qPCR, western blotting and immunofluorescence assay. RESULTS: Our results demonstrated that BBR significantly inhibited the proliferation of OVCAR3 and primary ovarian cancer cells in a dose- and time-dependent manner. The combination treatment of BBR and DDP had a prominent inhibitory effect on cancer cell growth and induced G0/G1 cell cycle arrest. TEM revealed that the majority of cells after BBR or DDP treatment had an increasing tendency of typical apoptotic and necrotic cell death morphology. Besides, BBR and DDP inhibited the expression of PCNA and Ki67 and enhanced the expression and activation of Caspase-3, Caspase-8, RIPK3 and MLKL. CONCLUSION: This study proposed that the combination therapy of BBR and DDP markedly enhanced more ovarian cancer cell death by inducing apoptosis and necroptosis, which may improve the anticancer effect of chemotherapy drugs. The apoptosis involved the caspase-dependent pathway, while the necroptosis involved the activation of the RIPK3-MLKL pathway. We hope our findings might provide a new insight for the potential of BBR as a therapeutic agent in the treatment of ovarian cancer.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Berberina/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Berberina/farmacologia , Caspases , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Necrose
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(3): 351-356, 2019 Mar 30.
Artigo em Chinês | MEDLINE | ID: mdl-31068315

RESUMO

OBJECTIVE: To investigate the effects of brazilin on the proliferation, apoptosis and autophagy of human tongue squamous cell carcinoma Tca8113 cells in vitro and explore its molecular mechanism. METHODS: The changes in the proliferation, morphology and apoptosis of Tca8113 cells in response to brazilin treatment were detected using MTT assay, Hoechst33342 staining, and Annexin V/PI double staining, respectively. The expressions of apoptosis-related protein Bax, Bcl-2, cleaved caspase-3 and autophagy-related proteins p-AMPK, p-mTOR, LC3B, and p62 in the treated cells were detected using Western blotting. The effect of treatment with both the AMPK pathway inhibitor and brazilin on the expressions of the pathway-related proteins p-AMPK, p-mTOR, and LC3B was assessed. RESULTS: MTT assay showed that brazilin significantly inhibited the proliferation of Tca8113 cells with an IC50 of 31.17 µmol/L at 24 h. Hoechst33342 staining showed that brazilin induced apoptotic morphological changes in Tca8113 cells in a concentration-dependent manner. Treatment with different concentrations of brazilin resulted in increased apoptosis in the cells. Brazilin obviously inhibited the expression of Bcl-2, p62 and p-mTOR and enhanced the expressions of Bax, cleaved caspase-3, LC3B and p-AMPK. The AMPK pathway inhibitor significantly inhibited the increase in p-AMPK and LC3B expressions and the decrease in p-mTOR expression induced by brazilin. CONCLUSIONS: Brazilin can inhibit the proliferation and promote apoptosis in Tca8113 cells and at the same time induces autophagy in the cells through the AMPK/mTOR pathway.


Assuntos
Autofagia , Neoplasias da Língua , Apoptose , Benzopiranos , Linhagem Celular Tumoral , Proliferação de Células , Humanos
12.
PLoS One ; 9(9): e108197, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264876

RESUMO

Streptococcus suis serotype 2 is an important zoonotic pathogen causing severe infections in pigs and humans. The pathogenesis of S. suis 2 infections, however, is still poorly understood. Spx proteins are a group of global regulators involved in stress tolerance and virulence. In this study, we characterized two orthologs of the Spx regulator, SpxA1 and SpxA2 in S. suis 2. Two mutant strains (ΔspxA1 and ΔspxA2) lacking the spx genes were constructed. The ΔspxA1 and ΔspxA2 mutants displayed different phenotypes. ΔspxA1 exhibited impaired growth in the presence of hydrogen peroxide, while ΔspxA2 exhibited impaired growth in the presence of SDS and NaCl. Both mutants were defective in medium lacking newborn bovine serum. Using a murine infection model, we demonstrated that the abilities of the mutant strains to colonize the tissues were significantly reduced compared to that of the wild-type strain. The mutant strains also showed a decreased level of survival in pig blood. Microarray analysis revealed a global regulatory role for SpxA1 and SpxA2. Furthermore, we demonstrated for the first time that Spx is involved in triggering the host inflammatory response. Collectively, our data suggest that SpxA1 and SpxA2 are global regulators that are implicated in stress tolerance and virulence in S. suis 2.


Assuntos
Proteínas de Bactérias/genética , Streptococcus suis/patogenicidade , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Animais , Sangue/microbiologia , Citocinas/metabolismo , Feminino , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Cloreto de Sódio/farmacologia , Dodecilsulfato de Sódio/farmacologia , Infecções Estreptocócicas/patologia , Streptococcus suis/genética , Streptococcus suis/crescimento & desenvolvimento , Suínos/sangue , Suínos/microbiologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA