Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(11): e0292269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015933

RESUMO

Since the positioning accuracy of sensors degrades due to noise and environmental interference when a single sensor is used to localize a suspended rare-earth permanent magnetically levitated train, a multi-sensor information fusion method using multiple sensors and self-correcting weighting is proposed for permanent magnetic levitated train localization. A decay memory factor is introduced to reduce the weight of the influence of historical measurement data on the fusion estimation, thus enhancing the robustness of the fusion algorithm. The Kalman filtering results suffer from inaccuracy when process noise is present in the system. In this paper, we use a covariance adaptive scheme that replaces the prediction step of the Kalman filter with covariance. It uses the covariance adaptive scheme to search the posterior sequence online and reconstruct the prior error covariance. Since the process noise covariance is not used in the new adaptive scheme, the negative impact of the mismatch noise statistics is greatly reduced. Simulation and experimental results show that the use of multi-sensor information fusion and covariance adaptive Kalman algorithm has significant advantages in terms of adaptability, accuracy and simplicity.


Assuntos
Imãs , Metais Terras Raras , Algoritmos , Simulação por Computador
2.
Micromachines (Basel) ; 13(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36557498

RESUMO

Achieving a real-time and accurate detection of drones in natural environments is essential for the interception of drones intruding into high-security areas. However, a rapid and accurate detection of drones is difficult because of their small size and fast speed. In this paper a drone detection method as proposed by pruning the convolutional channel and residual structures of YOLOv3-SPP3. First, the k-means algorithm was used to cluster label the boxes. Second, the channel and shortcut layer pruning algorithm was used to prune the model. Third, the model was fine tuned to achieve a real-time detection of drones. The experimental results obtained by using the Ubuntu server under the Python 3.6 environment show that the YOLOv3-SPP3 algorithm is better than YOLOV3, Tiny-YOLOv3, CenterNet, SSD300, and faster R-CNN. There is significant compression in the size, the maximum compression factor is 20.1 times, the maximum detection speed is increased by 10.2 times, the maximum map value is increased by 15.2%, and the maximum precision is increased by 16.54%. The proposed algorithm achieves the mAP score of 95.15% and the detection speed of 112 f/s, which can meet the requirements of the real-time detection of UAVs.

3.
Sensors (Basel) ; 21(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640880

RESUMO

Over the last decade, unmanned aerial vehicles (UAVs) with antenna arrays have usually been employed for the enhancement of wireless communication in millimeter-wave bands. They are commonly used as aerial base stations and relay platforms in order to serve multiple users. Many beamforming methods for improving communication quality based on channel estimation have been proposed. However, these methods can be resource-intensive due to the complexity of channel estimation in practice. Thus, in this paper, we formulate an MIMO blind beamforming problem at the receivers for UAV-assisted communications in which channel estimation is omitted in order to save communication resources. We introduce one analytical method, which is called the analytical constant modulus algorithm (ACMA), in order to perform blind beamforming at the UAV base station; this relies only on data received by the antenna. The feature of the constant modulus (CM) is employed to restrict the target user signals. Algebraic operations, such as singular value decomposition (SVD), are applied to separate the user signal space from other interferences. The number of users in the region served by the UAV can be detected by exploring information in the measured data. We seek solutions that are expressible as one Kronecker product structure in the signal space; then, the beamformers that correspond to each user can be successfully estimated. The simulation results show that, by using this analytically derived blind method, the system can achieve good signal recovery accuracy, a reasonable system sum rate, and acceptable complexity.

4.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066267

RESUMO

To address the threat of drones intruding into high-security areas, the real-time detection of drones is urgently required to protect these areas. There are two main difficulties in real-time detection of drones. One of them is that the drones move quickly, which leads to requiring faster detectors. Another problem is that small drones are difficult to detect. In this paper, firstly, we achieve high detection accuracy by evaluating three state-of-the-art object detection methods: RetinaNet, FCOS, YOLOv3 and YOLOv4. Then, to address the first problem, we prune the convolutional channel and shortcut layer of YOLOv4 to develop thinner and shallower models. Furthermore, to improve the accuracy of small drone detection, we implement a special augmentation for small object detection by copying and pasting small drones. Experimental results verify that compared to YOLOv4, our pruned-YOLOv4 model, with 0.8 channel prune rate and 24 layers prune, achieves 90.5% mAP and its processing speed is increased by 60.4%. Additionally, after small object augmentation, the precision and recall of the pruned-YOLOv4 almost increases by 22.8% and 12.7%, respectively. Experiment results verify that our pruned-YOLOv4 is an effective and accurate approach for drone detection.

5.
Physica A ; 544: 123379, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32308254

RESUMO

A stochastic susceptible-infectious-recovered epidemic model with nonlinear incidence rate is formulated to discuss the effects of temporary immunity, vaccination, and Le.´vy jumps on the transmission of diseases. We first determine the existence of a unique global positive solution and a positively invariant set for the stochastic system. Sufficient conditions for extinction and persistence in the mean of the disease are then achieved by constructing suitable Lyapunov functions. Based on the analysis, we conclude that noise intensity and the validity period of vaccination greatly influence the transmission dynamics of the system.

6.
Rev Sci Instrum ; 90(2): 026106, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831701

RESUMO

In order to measure the low current in the quadrupole mass spectrometer (QMS), we design a novel wide band composite trans-impedance preamplifier. The noise filtering components, which built in the feedback loop of the preamplifier, are designed to reduce the noise of two-stage amplifiers. By using the package with low thermal resistance factor, reducing the power consumption of preamplifiers and reducing the feedback resistance, the temperature drift of baseline signal is reduced. Compared with the traditional composite preamplifier, the novel preamplifier reduces maximum temperature drift amplitude and reduces root mean square of noise. At last, the environmental reliability of QMS detection was improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...