Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36707042

RESUMO

Aeromonas hydrophila can pose a great threat to fish survival. In this study, we investigated the differential immune and redox response in gut-liver axis of hybrid fish (WR) undergoing gut infection. WR anally intubated with A. hydrophila showed severe midgut injury with decreased length-to-width ratios of villi along with GC hyperplasia and enhanced antioxidant activities, but expression profiles of cytokines, chemokines, antibacterial molecules, redox sensors and tight junction proteins decreased dramatically. In contrast, immune-related gene expressions and antioxidant activities increased significantly in liver of WR following gut infection with A. hydrophila. These results highlighted the differential immune regulation and redox balance in gut-liver axis response to bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Animais , Carpa Dourada/metabolismo , Aeromonas hydrophila/fisiologia , Antioxidantes/metabolismo , Proteínas de Peixes/metabolismo , Fígado/metabolismo , Oxirredução , Doenças dos Peixes/microbiologia , Carpas/metabolismo , Imunidade Inata
2.
J Fish Dis ; 45(10): 1491-1509, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35749280

RESUMO

Aeromonas hydrophila is a common pathogen of freshwater fish. In this study, A. hydrophila infection was shown to cause tissue damage, trigger physiological changes as well as alter the expression profiles of immune- and metabolic-related genes in immune tissues of red crucian carp (RCC). Transcriptome analysis revealed that acute A. hydrophila infection exerted a profound effect on mitochondrial oxidative phosphorylation linking metabolic regulation to immune response. In addition, we further identified cellular senescence, apoptosis, necrosis and mitogen-activated protein kinase signal pathways as crucial signal pathways in the kidney of RCC subjected to A. hydrophila infection. These findings may have important implications for understanding modulation of immunometabolic response to bacterial infection.


Assuntos
Carcinoma de Células Renais , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Neoplasias Renais , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/veterinária , Carpa Dourada/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Transcriptoma
3.
Fish Shellfish Immunol ; 126: 197-210, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35609760

RESUMO

Ferritin M is involved in the regulation of fish immunity. In this study, open reading frame (ORF) sequences of ferritin M from hybrid fish and its parental species were 534 bp. Tissue-specific analysis indicated that the highest level of ferritin M from red crucian carp was observed in kidney, while peaked expressions of ferritin M from white crucian carp and hybrid carp were observed in gill. Elevated levels of ferritin M from hybrid carp and its parental species were detected in immune-related tissues following Aeromonas hydrophila infection or in cultured fish cell lines after lipopolysaccharide (LPS) challenge. Ferritin M overexpression could attenuate NF-κB and TNFα promoter activity in their respective fish cells. Purified ferritin M fusion proteins elicited in vitro binding activity to A. hydrophila and Edwardsiella tarda, lowered bacterial dissemination to tissues and alleviated inflammatory response. Furthermore, treatment with ferritin M fusion proteins could mitigate bacteria-induced liver damage and rescue antioxidant activity. These results suggested that ferritin M in hybrid fish showed a similar immune defense against bacteria infection in comparison with those of its parental species.


Assuntos
Infecções Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Animais , Carpas/metabolismo , Ferritinas , Proteínas de Peixes , Carpa Dourada
4.
Artigo em Inglês | MEDLINE | ID: mdl-35131431

RESUMO

Aeromonas hydrophila can threaten the survival of freshwater fish. In this study, A. hydrophila challenge could induce tissue damage, promote antioxidant imbalance as well as alter the transcript levels of oxidative stress indicators, apoptotic genes and metabolic enzyme genes in kidney of red crucian carp (RCC). Metabolomics analysis revealed that A. hydrophila challenge had a profound effect on amino acid metabolism and lipid metabolism. In addition, we further identified dipeptides, fatty acid derivatives, cortisol, choline and tetrahydrocortisone as crucial biomarkers in kidney of RCC subjected to A. hydrophila infection. These results highlighted the importance of metabolic strategy against bacterial infection.


Assuntos
Aeromonas hydrophila , Doenças dos Peixes/microbiologia , Carpa Dourada , Infecções por Bactérias Gram-Negativas/veterinária , Animais , Regulação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/microbiologia , Rim/patologia , Espécies Reativas de Oxigênio
5.
Fish Shellfish Immunol ; 120: 547-559, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34923115

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila infection could decrease blood cell numbers, promote blood cell damage as well as alter the levels of alkaline phosphatase (ALP), lysozyme (LZM), aspartate aminotransferase (AST), total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) in immune-related tissues of red crucian carp (RCC, 2 N = 100) and triploid cyprinid fish (3 N fish, 3 N = 150). In addition, the significant alternation of antioxidant status was observed in PBMCs isolated from RCC and 3 N following LPS stimulation. The core differential expression genes (DEGs) involved in apoptosis, immunity, inflammation and cellular signals were co-expressed differentially in RCC and 3 N following A. hydrophila challenge. NOD-like receptor (NLR) signals appeared to play a critical role in A. hydrophila-infected fish. DEGs of NLR signals in RCCah vs RCCctl were enriched in caspase-1-dependent Interleukin-1ß (IL-1ß) secretion, interferon (IFN) signals as well as cytokine activation, while DEGs of NLR signals in 3Nah vs 3Nctl were enriched in caspase-1-dependent IL-1ß secretion and antibacterial autophagy. These results highlighted the differential signal regulation of different ploidy cyprinid fish to cope with bacterial infection.


Assuntos
Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Transcriptoma , Aeromonas hydrophila , Animais , Antioxidantes , Células Sanguíneas , Carpas/genética , Carpas/imunologia , Caspases , Suplementos Nutricionais , Resistência à Doença , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Imunidade Inata , Ploidias
6.
Fish Shellfish Immunol ; 118: 369-384, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34571155

RESUMO

Aeromonas hydrophila can pose a great threat to survival of freshwater fish. In this study, A. hydrophila challenge could promote the erythrocyte hemolysis, increase free hemoglobin (FHB) level and generate malondialdehyde (MDA) production in plasma but decrease the levels of total antioxidant capacity (T-AOC), total superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (ALP) and lysozyme (LZM) of red crucian carp (RCC, 2 N = 100) and triploid hybrid fish (3 N fish, 3 N = 150) following A. hydrophila challenge. Elevated expression levels of heat shock protein 90 alpha (HSP90α), matrix metalloproteinase 9 (MMP-9), free fatty acid receptor 3 (FFAR3), paraoxonase 2 (PON2) and cytosolic phospholipase A2 (cPLA2) were observed in A. hydrophila-infected fish. In addition, A. hydrophila challenge could significantly increase expressions of cortisol, leucine, isoleucine, glutamate and polyunsaturated fatty acids (PUFAs) in RCC and 3 N, while glycolysis and tricarboxylic acid cycle appeared to be inactive. We identified differential fatty acid derivatives and their metabolic networks as crucial biomarkers from metabolic profiles of different ploidy cyprinid fish subjected to A. hydrophila infection. These results highlighted the comparative metabolic strategy of different ploidy cyprinid fish against bacterial infection.


Assuntos
Carcinoma de Células Renais , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Neoplasias Renais , Aeromonas hydrophila , Animais , Carpas/genética , Eritrócitos , Proteínas de Peixes/genética , Carpa Dourada , Infecções por Bactérias Gram-Negativas/veterinária , Hemólise , Triploidia
7.
Artigo em Inglês | MEDLINE | ID: mdl-34461291

RESUMO

Ferritin H can participate in the regulation of fish immunity. Tissue-specific analysis revealed that the highest expressions of Ferritin H in parental species were observed in spleen, while peaked level of Ferritin H mRNA in hybrid fish was observed in liver. In addition, A. hydrophila challenge could sharply enhance their Ferritin H mRNA expression in liver, kidney and spleen. To further investigate their roles in immune regulation, their Ferritin H fusion proteins were produced in vitro. Ferritin H fusion proteins could exhibit a direct binding activity to A. hydrophila and endotoxin in a dose-dependent manner, restrict dissemination of A. hydrophila to tissues and abrogate inflammatory cascades. Moreover, treatment with Ferritin H fusion proteins could reduce A. hydrophila-induced lipid peroxidation. These results indicated that Ferritin H in hybrid fish elicited a similar immune regulation of A. hydrophila-induced inflammatory signals in comparison with those of its parents.


Assuntos
Apoferritinas/imunologia , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/metabolismo , Aeromonas hydrophila/imunologia , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Carpas/microbiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Baço/imunologia , Baço/metabolismo , Baço/patologia
8.
Fish Shellfish Immunol ; 116: 1-11, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34174452

RESUMO

NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.


Assuntos
Aeromonas hydrophila , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Proteolipídeos/imunologia , Nadadeiras de Animais/citologia , Animais , Carpas/genética , Sobrevivência Celular , Células Cultivadas , Quimera , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Expressão Gênica , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Rim/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Potencial da Membrana Mitocondrial , Proteolipídeos/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Baço/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...