Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
bioRxiv ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38895242

RESUMO

Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.

2.
Adv Sci (Weinh) ; : e2400929, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900070

RESUMO

To elucidate the brain-wide information interactions that vary and contribute to individual differences in schizophrenia (SCZ), an information-resolved method is employed to construct individual synergistic and redundant interaction matrices based on regional pairwise BOLD time-series from 538 SCZ and 540 normal controls (NC). This analysis reveals a stable pattern of regionally-specific synergy dysfunction in SCZ. Furthermore, a hierarchical Bayesian model is applied to deconstruct the patterns of whole-brain synergy dysfunction into three latent factors that explain symptom heterogeneity in SCZ. Factor 1 exhibits a significant positive correlation with Positive and Negative Syndrome Scale (PANSS) positive scores, while factor 3 demonstrates significant negative correlations with PANSS negative and general scores. By integrating the neuroimaging data with normative gene expression information, this study identifies that each of these three factors corresponded to a subset of the SCZ risk gene set. Finally, by combining data from NeuroSynth and open molecular imaging sources, along with a spatially heterogeneous mean-field model, this study delineates three SCZ synergy factors corresponding to distinct symptom profiles and implicating unique cognitive, neurodynamic, and neurobiological mechanisms.

3.
Neurorehabil Neural Repair ; 38(6): 425-436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676561

RESUMO

BACKGROUND: Corticospinal tract (CST) is the principal motor pathway; we aim to explore the structural plasticity mechanism in CST during stroke rehabilitation. METHODS: A total of 25 patients underwent diffusion tensor imaging before rehabilitation (T1), 1-month post-rehabilitation (T2), 2 months post-rehabilitation (T3), and 1-year post-discharge (T4). The CST was segmented, and fractional anisotropy (FA), axial diffusion (AD), mean diffusivity (MD), and radial diffusivity (RD) were determined using automated fiber quantification tractography. Baseline level of laterality index (LI) and motor function for correlation analysis. RESULTS: The FA values of all segments in the ipsilesional CST (IL-CST) were lower compared with normal CST. Repeated measures analysis of variance showed time-related effects on FA, AD, and MD of the IL-CST, and there were similar dynamic trends in these 3 parameters. At T1, FA, AD, and MD values of the mid-upper segments of IL-CST (around the core lesions) were the lowest; at T2 and T3, values for the mid-lower segments were lower than those at T1, while the values for the mid-upper segments gradually increased; at T4, the values for almost entire IL-CST were higher than before. The highest LI was observed at T2, with a predominance in contralesional CST. The LIs for the FA and AD at T1 were positively correlated with the change rate of motor function. CONCLUSIONS: IL-CST showed aggravation followed by improvement from around the lesion to the distal end. Balance of interhemispheric CST may be closely related to motor function, and LIs for FA and AD may have predictive value for mild-to-moderate stroke rehabilitation. Clinical Trial Registration. URL: http://www.chictr.org.cn; Unique Identifier: ChiCTR1800019474.


Assuntos
Imagem de Tensor de Difusão , Plasticidade Neuronal , Tratos Piramidais , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/fisiopatologia , Tratos Piramidais/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Reabilitação do Acidente Vascular Cerebral/métodos , Idoso , Acidente Vascular Cerebral/fisiopatologia , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto
4.
Sci Bull (Beijing) ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580551

RESUMO

The rhesus macaque (Macaca mulatta) is a crucial experimental animal that shares many genetic, brain organizational, and behavioral characteristics with humans. A macaque brain atlas is fundamental to biomedical and evolutionary research. However, even though connectivity is vital for understanding brain functions, a connectivity-based whole-brain atlas of the macaque has not previously been made. In this study, we created a new whole-brain map, the Macaque Brainnetome Atlas (MacBNA), based on the anatomical connectivity profiles provided by high angular and spatial resolution ex vivo diffusion MRI data. The new atlas consists of 248 cortical and 56 subcortical regions as well as their structural and functional connections. The parcellation and the diffusion-based tractography were evaluated with invasive neuronal-tracing and Nissl-stained images. As a demonstrative application, the structural connectivity divergence between macaque and human brains was mapped using the Brainnetome atlases of those two species to uncover the genetic underpinnings of the evolutionary changes in brain structure. The resulting resource includes: (1) the thoroughly delineated Macaque Brainnetome Atlas (MacBNA), (2) regional connectivity profiles, (3) the postmortem high-resolution macaque diffusion and T2-weighted MRI dataset (Brainnetome-8), and (4) multi-contrast MRI, neuronal-tracing, and histological images collected from a single macaque. MacBNA can serve as a common reference frame for mapping multifaceted features across modalities and spatial scales and for integrative investigation and characterization of brain organization and function. Therefore, it will enrich the collaborative resource platform for nonhuman primates and facilitate translational and comparative neuroscience research.

5.
Hum Brain Mapp ; 45(4): e26646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38433705

RESUMO

Comprising numerous subnuclei, the thalamus intricately interconnects the cortex and subcortex, orchestrating various facets of brain functions. Extracting personalized parcellation patterns for these subnuclei is crucial, as different thalamic nuclei play varying roles in cognition and serve as therapeutic targets for neuromodulation. However, accurately delineating the thalamic nuclei boundary at the individual level is challenging due to intersubject variability. In this study, we proposed a prior-guided parcellation (PG-par) method to achieve robust individualized thalamic parcellation based on a central-boundary prior. We first constructed probabilistic atlas of thalamic nuclei using high-quality diffusion MRI datasets based on the local diffusion characteristics. Subsequently, high-probability voxels in the probabilistic atlas were utilized as prior guidance to train unique multiple classification models for each subject based on a multilayer perceptron. Finally, we employed the trained model to predict the parcellation labels for thalamic voxels and construct individualized thalamic parcellation. Through a test-retest assessment, the proposed prior-guided individualized thalamic parcellation exhibited excellent reproducibility and the capacity to detect individual variability. Compared with group atlas registration and individual clustering parcellation, the proposed PG-par demonstrated superior parcellation performance under different scanning protocols and clinic settings. Furthermore, the prior-guided individualized parcellation exhibited better correspondence with the histological staining atlas. The proposed prior-guided individualized thalamic parcellation method contributes to the personalized modeling of brain parcellation.


Assuntos
Núcleos Talâmicos , Tálamo , Humanos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagem , Encéfalo , Córtex Cerebral
6.
Cell Rep ; 43(2): 113770, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38363683

RESUMO

Cerebellar involvement in both motor and non-motor functions manifests in specific regions of the human cerebellum, revealing the functional heterogeneity within it. One compelling theory places the heterogeneity within the cerebellar functional hierarchy along the sensorimotor-association (SA) axis. Despite extensive neuroimaging studies, evidence for the cerebellar SA axis from different modalities and scales was lacking. Thus, we establish a significant link between the cerebellar SA axis and spatio-molecular profiles. Utilizing the gene set variation analysis, we find the intermediate biological principles the significant genes leveraged to scaffold the cerebellar SA axis. Interestingly, we find these spatio-molecular profiles notably associated with neuropsychiatric dysfunction and recent evolution. Furthermore, cerebello-cerebral interactions at genetic and functional connectivity levels mirror the cerebral cortex and cerebellum's SA axis. These findings can provide a deeper understanding of how the human cerebellar SA axis is shaped and its role in transitioning from sensorimotor to association functions.


Assuntos
Cerebelo , Córtex Cerebral , Humanos , Neuroimagem
7.
Innovation (Camb) ; 5(1): 100554, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38239782
8.
J Neurosci ; 44(13)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38290847

RESUMO

Large-scale functional networks are spatially distributed in the human brain. Despite recent progress in differentiating their functional roles, how the brain navigates the spatial coordination among them and the biological relevance of this coordination is still not fully understood. Capitalizing on canonical individualized networks derived from functional MRI data, we proposed a new concept, that is, co-representation of functional brain networks, to delineate the spatial coordination among them. To further quantify the co-representation pattern, we defined two indexes, that is, the co-representation specificity (CoRS) and intensity (CoRI), for separately measuring the extent of specific and average expression of functional networks at each brain location by using the data from both sexes. We found that the identified pattern of co-representation was anchored by cortical regions with three types of cytoarchitectural classes along a sensory-fugal axis, including, at the first end, primary (idiotypic) regions showing high CoRS, at the second end, heteromodal regions showing low CoRS and high CoRI, at the third end, paralimbic regions showing low CoRI. Importantly, we demonstrated the critical role of myeloarchitecture in sculpting the spatial distribution of co-representation by assessing the association with the myelin-related neuroanatomical and transcriptomic profiles. Furthermore, the significance of manifesting the co-representation was revealed in its prediction of individual behavioral ability. Our findings indicated that the spatial coordination among functional networks was built upon an anatomically configured blueprint to facilitate neural information processing, while advancing our understanding of the topographical organization of the brain by emphasizing the assembly of functional networks.


Assuntos
Mapeamento Encefálico , Encéfalo , Feminino , Humanos , Masculino , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sensação
9.
Chin Med J (Engl) ; 137(5): 508-523, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38269482

RESUMO

ABSTRACT: The brain is a complex organ that requires precise mapping to understand its structure and function. Brain atlases provide a powerful tool for studying brain circuits, discovering biological markers for early diagnosis, and developing personalized treatments for neuropsychiatric disorders. Neuromodulation techniques, such as transcranial magnetic stimulation and deep brain stimulation, have revolutionized clinical therapies for neuropsychiatric disorders. However, the lack of fine-scale brain atlases limits the precision and effectiveness of these techniques. Advances in neuroimaging and machine learning techniques have led to the emergence of stereotactic-assisted neurosurgery and navigation systems. Still, the individual variability among patients and the diversity of brain diseases make it necessary to develop personalized solutions. The article provides an overview of recent advances in individualized brain mapping and navigated neuromodulation and discusses the methodological profiles, advantages, disadvantages, and future trends of these techniques. The article concludes by posing open questions about the future development of individualized brain mapping and navigated neuromodulation.


Assuntos
Encefalopatias , Estimulação Encefálica Profunda , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Neuroimagem , Estimulação Magnética Transcraniana/métodos
10.
J Neural Eng ; 20(6)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37939483

RESUMO

Objective.Transcranial magnetic stimulation (TMS) has emerged as a prominent non-invasive technique for modulating brain function and treating mental disorders. By generating a high-precision magnetically evoked electric field (E-field) using a TMS coil, it enables targeted stimulation of specific brain regions. However, current computational methods employed for E-field simulations necessitate extensive preprocessing and simulation time, limiting their fast applications in the determining the optimal coil placement.Approach.We present an attentional deep learning network to simulate E-fields. This network takes individual magnetic resonance images and coil configurations as inputs, firstly transforming the images into explicit brain tissues and subsequently generating the local E-field distribution near the target brain region. Main results. Relative to the previous deep-learning simulation method, the presented method reduced the mean relative error in simulated E-field strength of gray matter by 21.1%, and increased the correlation between regional E-field strengths and corresponding electrophysiological responses by 35.0% when applied into another dataset.In-vivoTMS experiments further revealed that the optimal coil placements derived from presented method exhibit comparable stimulation performance on motor evoked potentials to those obtained using computational methods. The simplified preprocessing and increased simulation efficiency result in a significant reduction in the overall time cost of traditional TMS coil placement optimization, from several hours to mere minutes.Significance.The precision and efficiency of presented simulation method hold promise for its application in determining individualized coil placements in clinical practice, paving the way for personalized TMS treatments.


Assuntos
Aprendizado Profundo , Humanos , Encéfalo/fisiologia , Estimulação Magnética Transcraniana/métodos , Mapeamento Encefálico/métodos , Substância Cinzenta
11.
Eur Radiol ; 33(9): 6134-6144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37014408

RESUMO

OBJECTIVES: To evaluate the dynamic evolution process of overall brain health in liver transplantation (LT) recipients, we employed a deep learning-based neuroanatomic biomarker to measure longitudinal changes of brain structural patterns before and 1, 3, and 6 months after surgery. METHODS: Because of the ability to capture patterns across all voxels from a brain scan, the brain age prediction method was adopted. We constructed a 3D-CNN model through T1-weighted MRI of 3609 healthy individuals from 8 public datasets and further applied it to a local dataset of 60 LT recipients and 134 controls. The predicted age difference (PAD) was calculated to estimate brain changes before and after LT, and the network occlusion sensitivity analysis was used to determine the importance of each network in age prediction. RESULTS: The PAD of patients with cirrhosis increased markedly at baseline (+ 5.74 years) and continued to increase within one month after LT (+ 9.18 years). After that, the brain age began to decrease gradually, but it was still higher than the chronological age. The PAD values of the OHE subgroup were higher than those of the no-OHE, and the discrepancy was more obvious at 1-month post-LT. High-level cognition-related networks were more important in predicting the brain age of patients with cirrhosis at baseline, while the importance of primary sensory networks increased temporarily within 6-month post-LT. CONCLUSIONS: The brain structural patterns of LT recipients showed inverted U-shaped dynamic change in the early stage after transplantation, and the change in primary sensory networks may be the main contributor. KEY POINTS: • The recipients' brain structural pattern showed an inverted U-shaped dynamic change after LT. • The patients' brain aging aggravated within 1 month after surgery, and the subset of patients with a history of OHE was particularly affected. • The change of primary sensory networks is the main contributor to the change in brain structural patterns.


Assuntos
Encefalopatia Hepática , Transplante de Fígado , Humanos , Estudos Longitudinais , Encefalopatia Hepática/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cirrose Hepática/patologia , Fibrose
12.
Neurosci Bull ; 39(10): 1533-1543, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37014553

RESUMO

Alzheimer's disease (AD) is associated with the impairment of white matter (WM) tracts. The current study aimed to verify the utility of WM as the neuroimaging marker of AD with multisite diffusion tensor imaging datasets [321 patients with AD, 265 patients with mild cognitive impairment (MCI), 279 normal controls (NC)], a unified pipeline, and independent site cross-validation. Automated fiber quantification was used to extract diffusion profiles along tracts. Random-effects meta-analyses showed a reproducible degeneration pattern in which fractional anisotropy significantly decreased in the AD and MCI groups compared with NC. Machine learning models using tract-based features showed good generalizability among independent site cross-validation. The diffusion metrics of the altered regions and the AD probability predicted by the models were highly correlated with cognitive ability in the AD and MCI groups. We highlighted the reproducibility and generalizability of the degeneration pattern of WM tracts in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Reprodutibilidade dos Testes , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/complicações , Encéfalo/diagnóstico por imagem
13.
Schizophr Bull ; 49(5): 1336-1344, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37083900

RESUMO

BACKGROUND: Evidence from functional and structural research suggests that abnormal brain activity plays an important role in the pathophysiology of schizophrenia (SZ). However, limited studies have focused on post-treatment changes, and current conclusions are inconsistent. STUDY DESIGN: We recruited 104 SZ patients to have resting-state functional magnetic resonance imaging scans at baseline and 8 weeks of treatment with second-generation antipsychotics, along with baseline scanning of 86 healthy controls (HCs) for comparison purposes. Individual regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), and degree centrality values were calculated to evaluate the functional activity. The Positive and Negative Syndrome Scale (PANSS) and MATRICS Consensus Cognitive Battery were applied to measure psychiatric symptoms and cognitive impairment in SZ patients. RESULTS: Compared with HCs at baseline, SZ patients had higher ALFF and ReHo values in the bilateral inferior temporal gyrus, inferior frontal gyrus, and lower ALFF and ReHo values in fusiform gyrus and precuneus. Following 8 weeks of treatment, ReHo was increased in right medial region of the superior frontal gyrus (SFGmed) and decreased in the left middle occipital gyrus and the left postcentral gyrus. Meanwhile, ReHo of the right SFGmed was increased after treatment in the response group (the reduction rate of PANSS ≥50%). Enhanced ALFF in the dorsolateral of SFG correlated with improvement in depressive factor score. CONCLUSIONS: These findings provide novel evidence for the abnormal functional activity hypothesis of SZ, suggesting that abnormality of right SFGmed can be used as a biomarker of treatment response in SZ.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Córtex Pré-Frontal
14.
Hum Brain Mapp ; 44(9): 3467-3480, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36988434

RESUMO

Alzheimer's disease (AD) is a common neurodegeneration disease associated with substantial disruptions in the brain network. However, most studies investigated static resting-state functional connections, while the alteration of dynamic functional connectivity in AD remains largely unknown. This study used group independent component analysis and the sliding-window method to estimate the subject-specific dynamic connectivity states in 1704 individuals from three data sets. Informative inherent states were identified by the multivariate pattern classification method, and classifiers were built to distinguish ADs from normal controls (NCs) and to classify mild cognitive impairment (MCI) patients with informative inherent states similar to ADs or not. In addition, MCI subgroups with heterogeneous functional states were examined in the context of different cognition decline trajectories. Five informative states were identified by feature selection, mainly involving functional connectivity belonging to the default mode network and working memory network. The classifiers discriminating AD and NC achieved the mean area under the receiver operating characteristic curve of 0.87 with leave-one-site-out cross-validation. Alterations in connectivity strength, fluctuation, and inter-synchronization were found in AD and MCIs. Moreover, individuals with MCI were clustered into two subgroups, which had different degrees of atrophy and different trajectories of cognition decline progression. The present study uncovered the alteration of dynamic functional connectivity in AD and highlighted that the dynamic states could be powerful features to discriminate patients from NCs. Furthermore, it demonstrated that these states help to identify MCIs with faster cognition decline and might contribute to the early prevention of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina
15.
EBioMedicine ; 89: 104455, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758481

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disease associated with widespread disruptions in intrinsic local specialization and global integration in the functional system of the brain. These changes in integration may further disrupt the global signal (GS) distribution, which might represent the local relative contribution to global activity in functional magnetic resonance imaging (fMRI). METHODS: fMRI scans from a discovery dataset (n = 809) and a validated dataset (n = 542) were used in the analysis. We investigated the alteration of GS topography using the GS correlation (GSCORR) in patients with mild cognitive impairment (MCI) and AD. The association between GS alterations and functional network properties was also investigated based on network theory. The underlying mechanism of GSCORR alterations was elucidated using imaging-transcriptomics. FINDINGS: Significantly increased GS topography in the frontal lobe and decreased GS topography in the hippocampus, cingulate gyrus, caudate, and middle temporal gyrus were observed in patients with AD (Padj < 0.05). Notably, topographical GS changes in these regions correlated with cognitive ability (P < 0.05). The changes in GS topography also correlated with the changes in functional network segregation (ρ = 0.5). Moreover, the genes identified based on GS topographical changes were enriched in pathways associated with AD and neurodegenerative diseases. INTERPRETATION: Our findings revealed significant changes in GS topography and its molecular basis, confirming the informative role of GS in AD and further contributing to the understanding of the relationship between global and local neuronal activities in patients with AD. FUNDING: Beijing Natural Science Funds for Distinguished Young Scholars, China; Fundamental Research Funds for the Central Universities, China; National Natural Science Foundation, China.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Mapeamento Encefálico , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos
16.
Neurol Sci ; 44(2): 649-657, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36222907

RESUMO

BACKGROUND: Transient global amnesia is common in the older adult, but the cause and mechanism remain unclear. Focal brain lesions allow for causal links between the lesion location and resulting symptoms, and we based on the reported TGA-causing lesions and used lesion network mapping to explore the causal neuroanatomical substrate of TGA. METHODS: Fifty-one cases of transient global amnesias with DWI lesions from the literature were identified, and clinical data were extracted and analyzed. Next, we mapped each lesion volume onto a reference brain and computed the network of regions functionally connected to each lesion location using a large normative connectome dataset. RESULTS: Lesions primarily occurred in the hippocampus, and in addition to the hippocampus, there are also other locations of TGA-causing lesions such as the cingulate gyrus, anterior thalamic nucleus (ATN), putamen, caudate nucleus, corpus callosum, fornix. More than 90% of TGA-causing lesions inside the hippocampus were functionally connected with the default mode network (DMN). CONCLUSION: Structural abnormality in the hippocampus was the most consistently reported in TGA, and besides the hippocampus, lesions occurring at several other brain locations also could cause TGA. The DMN may also be involved in the pathophysiology of TGA. According to the clinical and neuroimaging characteristics, TGA may be a syndrome with multiple causes and cannot be treated simply as a subtype of TIA.


Assuntos
Amnésia Global Transitória , Conectoma , Humanos , Idoso , Amnésia Global Transitória/diagnóstico por imagem , Amnésia Global Transitória/etiologia , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo , Hipocampo/patologia , Amnésia/complicações
17.
Cereb Cortex ; 33(9): 5264-5275, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36255322

RESUMO

During the preadolescent period, when the cerebral thickness, curvature, and myelin are constantly changing, the brain's regionalization patterns underwent persistent development, contributing to the continuous improvements of various higher cognitive functions. Using a brain atlas to study the development of these functions has attracted much attention. However, the brains of children do not always have the same topological patterns as those of adults. Therefore, age-specific brain mapping is particularly important, serving as a basic and indispensable tool to study the normal development of children. In this study, we took advantage of longitudinal data to create the brain atlas specifically for preadolescent children. The resulting human Child Brainnetome Atlas, with 188 cortical and 36 subcortical subregions, provides a precise period-specific and cross-validated version of the brain atlas that is more appropriate for adoption in the preadolescent period. In addition, we compared and illustrated for regions with different topological patterns in the child and adult atlases, providing a topologically consistent reference for subsequent research studying child and adolescent development.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Adolescente , Humanos , Criança , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Cognição , Desenvolvimento do Adolescente
18.
Cereb Cortex ; 33(7): 3683-3700, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005854

RESUMO

Difficulties in parsing the multiaspect heterogeneity of schizophrenia (SCZ) based on current nosology highlight the need to subtype SCZ using objective biomarkers. Here, utilizing a large-scale multisite SCZ dataset, we identified and validated 2 neuroanatomical subtypes with individual-level abnormal patterns of the tensor-based morphometric measurement. Remarkably, compared with subtype 1, which showed moderate deficits of some subcortical nuclei and an enlarged striatum and cerebellum, subtype 2, which showed cerebellar atrophy and more severe subcortical nuclei atrophy, had a higher subscale score of negative symptoms, which is considered to be a core aspect of SCZ and is associated with functional outcome. Moreover, with the neuroimaging-clinic association analysis, we explored the detailed relationship between the heterogeneity of clinical symptoms and the heterogeneous abnormal neuroanatomical patterns with respect to the 2 subtypes. And the neuroimaging-transcription association analysis highlighted several potential heterogeneous biological factors that may underlie the subtypes. Our work provided an effective framework for investigating the heterogeneity of SCZ from multilevel aspects and may provide new insights for precision psychiatry.


Assuntos
Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Neuroimagem , Cerebelo/diagnóstico por imagem , Atrofia
19.
Cereb Cortex ; 33(8): 4248-4261, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36069939

RESUMO

The human cerebral cortex conforms to specific functional hierarchies facilitating information processing and higher-order cognition. Prior studies in adults have unveiled a dominant functional hierarchy spanning from sensorimotor regions to transmodal regions, which is also present in younger cohorts. However, how the functional hierarchy develops and the underlying molecular mechanisms remain to be investigated. Here, we set out to investigate the developmental patterns of the functional hierarchy for preschool children (#scans = 141, age = 2.41-6.90 years) using a parsimonious general linear model and the underlying biological mechanisms by combining the neuroimaging developmental pattern with two separate transcriptomic datasets (i.e. Allen Human Brain Atlas and BrainSpan Atlas). Our results indicated that transmodal regions were further segregated from sensorimotor regions and that such changes were potentially driven by two gene clusters with distinct enrichment profiles, namely prenatal gene cluster and postnatal gene cluster. Additionally, we found similar developmental profiles manifested in subsequent developmental periods by conducting identical analyses on the Human Connectome Projects in Development (#scans = 638, age = 5.58-21.92 years) and Philadelphia Neurodevelopment Cohort datasets (#scans = 795, age = 8-21 years), driven by concordant two gene clusters. Together, these findings illuminate a comprehensive developmental principle of the functional hierarchy and the underpinning molecular factors, and thus may shed light on the potential pathobiology of neurodevelopmental disorders.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Adulto , Feminino , Gravidez , Pré-Escolar , Humanos , Criança , Adolescente , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Córtex Cerebral/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Neuroimagem , Cognição , Conectoma/métodos
20.
Biol Psychiatry ; 93(9): 759-769, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36137824

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder with significant heterogeneity. Different AD phenotypes may be associated with specific brain network changes. Uncovering disease heterogeneity by using functional networks could provide insights into precise diagnoses. METHODS: We investigated the subtypes of AD using nonnegative matrix factorization clustering on the previously identified 216 resting-state functional connectivities that differed between AD and normal control subjects. We conducted the analysis using a discovery dataset (n = 809) and a validated dataset (n = 291). Next, we grouped individuals with mild cognitive impairment according to the model obtained in the AD groups. Finally, the clinical measures and brain structural characteristics were compared among the subtypes to assess their relationship with differences in the functional network. RESULTS: Individuals with AD were clustered into 4 subtypes reproducibly, which included those with 1) diffuse and mild functional connectivity disruption (subtype 1), 2) predominantly decreased connectivity in the default mode network accompanied by an increase in the prefrontal circuit (subtype 2), 3) predominantly decreased connectivity in the anterior cingulate cortex accompanied by an increase in prefrontal cortex connectivity (subtype 3), and 4) predominantly decreased connectivity in the basal ganglia accompanied by an increase in prefrontal cortex connectivity (subtype 4). In addition to these differences in functional connectivity, differences between the AD subtypes were found in cognition, structural measures, and cognitive decline patterns. CONCLUSIONS: These comprehensive results offer new insights that may advance precision medicine for AD and facilitate strategies for future clinical trials.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...