Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 338: 139446, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37423414

RESUMO

The health of the aquatic ecosystem has recently been severely affected by cyanobacterial blooms brought on by eutrophication. Therefore, it is critical to develop efficient and secure methods to control dangerous cyanobacteria, such as Microcystis aeruginosa. In this research, we tested the inhibition of M. aeruginosa growth by a Scenedesmus sp. strain isolated from a culture pond. Scenedesmus sp. culture filtrate that had been lyophilized was added to M. aeruginosa, and cultivation for seven days, the cell density, chlorophyll a (Chl-a) concentration, maximum quantum yield of photosystem II (Fv/Fm), the activities of superoxide dismutase (SOD), catalase (CAT), and the concentration of malondialdehyde (MDA) and glutathione (GSH) were measured. Moreover, non-targeted metabolomics was carried out to provide light on the inhibitory mechanism in order to better understand the metabolic response. According to the results, M. aeruginosa is effectively inhibited by the lyophilized Scenedesmus sp. culture filtrate at a rate of 51.2%. Additionally, the lyophilized Scenedesmus sp. clearly inhibit the photosystem and damages the antioxidant defense system of M. aeruginosa cells, resulting in oxidative damage, which worsens membrane lipid peroxidation, according to changes in Chl-a, Fv/Fm, SOD, CAT enzyme activities and MDA, GSH. Metabolomics analysis revealed that the secondary metabolites of Scenedesmus sp. significantly interfere with the metabolism of M. aeruginosa involved in amino acid synthesis, membrane creation and oxidative stress, which is coherent with the morphology and physiology outcomes. These results demonstrate that the secondary metabolites of Scenedesmus sp. exert algal inhibition effect by breaked the membrane structure, destroyed the photosynthetic system of microalgae, inhibited amino acid synthesis, reduced antioxidant capacity, and eventually caused algal cell lysis and death. Our research provides a reliable basis for the biological control of cyanobacterial blooms on the one hand, and on other hand supply application of non-targeted metabolome on the study of microalgae allelochemicals.


Assuntos
Cianobactérias , Microalgas , Microcystis , Scenedesmus , Antioxidantes/farmacologia , Clorofila A , Ecossistema , Cianobactérias/metabolismo , Superóxido Dismutase/metabolismo , Glutationa/farmacologia , Microalgas/metabolismo , Metabolômica , Aminoácidos/farmacologia
2.
PLoS One ; 14(7): e0219699, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31323046

RESUMO

For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.


Assuntos
Exoesqueleto/química , Perna (Organismo)/química , Proteômica , Animais , Carbonato de Cálcio/química , China , Cristalografia por Raios X , Microscopia Eletrônica de Varredura , Minerais/química , Nácar/química , Proteoma , Espectroscopia de Infravermelho com Transformada de Fourier , Transcriptoma
3.
J Proteomics ; 200: 74-89, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-30922736

RESUMO

Fish skin mucus serves as the first line of defence against pathogens and external stressors. The mudskipper Boleophthalmus pectinirostris inhabits intertidal mudflats containing abundant and diverse microbial populations; thus, the skin and mucus of B. pectinirostris are very important for immune defence. However, the molecules involved in the immune response and mucus secretion in the skin of this fish are poorly understood. To explore the proteomic profile of the skin mucus and understand the molecular mechanisms underlying B. pectinirostris adaption to amphibious environments, the microstructure of B. pectinirostris skin was analysed, and a series of histochemical procedures were employed for mucous glycoprotein localization and characterization. In addition, the antibacterial activity of B. pectinirostris skin mucus was studied, and the transcriptome of the skin and in-depth proteome of the mucus were determined. These studies revealed the hierarchical structure of B. pectinirostris skin and different types of glycoproteins (GPs) in the dermal bulge (DB) of the B. pectinirostris skin epidermis. The mucus has a broad antimicrobial spectrum and significant effects on the bacterial morphology. Furthermore, 93,914 unigenes were sequenced from B. pectinirostris skin tissue, and a total of 559 proteins were identified from B. pectinirostris skin mucus. SIGNIFICANCE.


Assuntos
Proteínas de Peixes/metabolismo , Peixes/metabolismo , Muco/metabolismo , Proteômica , Pele/metabolismo , Animais , Transcriptoma
4.
Fish Shellfish Immunol ; 84: 1018-1029, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30395994

RESUMO

Chitinase is an important enzyme for many physiological processes. Mytichitin-1 is a chitinase-like protein in Mytilus coruscus, and its C-terminal 55-AA fragment (mytichitin-CB) is a novel antimicrobial peptide, suggesting a new immune process in which chitinase is involved; mytichtin-1 may have various forms in the different biological processes of M. coruscus. Thus, the study of mytichitin-1 will be helpful for understanding the mechanism of mussel immune biology and the functional diversity of chitinase. In this study, mytichitin-1 was recombinantly expressed with different lengths, full-length mytichtin-1 (rMchi-F) and the N-terminal region (rMchi-N) in Escherichia coli BL21 with codon optimization. The results of SDS-PAGE, Western blotting, and mass spectrometry confirmed that the two forms of mytichitin-1 had been successfully recombinant expressed with a yield of 40 mg purified enzyme per L culture. In addition, the 55-AA fragment of mytichitin-CB was chemically synthesized (sMchi-CB). After purification and oxidation, the functions of the three protein products were analysed, including chitin degradation, chitin binding, and antimicrobial activities. Both rMchi-F and rMchi-N displayed enzymatic activity with the optimum pH of 4.0 and optimum temperature of 40 °C, and rMchi-N showed a stronger activity than rMchi-F. Enzymatic activities of rMchi-F and rMchi-N were stimulated by the metal ions Fe2+, Ba2+, and Na+ and partially inhibited by Cu2+, Ni2+ and Zn2+. rMchi-F, rMchi-N, and sMchi-CB had the ability to combine with colloid chitin. The antimicrobial activities of these proteins were tested against bacteria and fungi, and the results indicated the strongest activity for sMchi-CB and the weakest activity for rMchi-N. Using a prepared anti-rMchi-F polyclonal antibody, immunohistochemistry and immunoprecipitation were performed and the results revealed the location of mytichitin-1 in mantle, digestive gland and blood cells. In addition, two forms of mytichitin-1, mytichitin-CB (6 kD) and full-length mytichitin-1 (48 kD), were detected, and a 35 kD protein was identified as the third form of mytichitin-1, existing in various tissues of M. coruscus. These findings suggest that mytichitin-1 may play different roles, with at least three forms, in different M. coruscus tissues.


Assuntos
Quitina/genética , Imunidade Inata/genética , Mytilus/genética , Mytilus/imunologia , Sequência de Aminoácidos , Animais , Antibacterianos/análise , Sequência de Bases , Quitina/química , Quitina/metabolismo , Escherichia coli/genética , Microrganismos Geneticamente Modificados/genética , Especificidade de Órgãos
5.
J Proteomics ; 144: 87-98, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321578

RESUMO

UNLABELLED: Mussels attach to various submerged surfaces by using the byssus, which contains different proteins and is a promising source of water-resistant bio-adhesives for potential use in biotechnological and medical applications. The protein composition of the byssus has not yet been fully understood although at least eleven byssal proteins were characterized previously. In order to increase genomic resources and identify new byssal proteins from mussel Mytilus coruscus, high-throughput Illumina sequencing was undertaken on the foot, and 79,997,776 paired-ends reads were generated, yielding a library containing 88,825ft unigenes. The M. coruscus byssus was divided into three parts, the proximal thread, the distal thread, and the plaque. Byssal proteins from each part of the byssus were analyzed by shotgun-LTQ analysis. The MS/MS spectra were searched against the foot unigenes dataset and 48 byssal proteins were identified from the M. coruscus byssus. From the whole set, 17, 5, and 11 proteins were exclusive to the proximal thread, the distal thread, and the plaque, respectively. These data can be used as a resource for further studies on the roles of byssal proteins in the deposition of different byssus parts (thread vs. plaque) or in the different mechanical properties (tenacity vs. adhesion). BIOLOGICAL SIGNIFICANCE: Byssal proteins are the major component that controls different aspects of the byssal formation process and thus a source of bioactive molecules that would offer interesting perspectives in biomaterials and bio-adhesive fields. In this paper, we characterized the protein set from different partsof Mytilus coruscus byssus by a combination of transcriptome/proteome technical. A whole set of 48 byssal proteins were described here, including proteins of collagen-like, C1q domain-containing, protease inhibitor-like, tyrosinase-like, SOD, and others. Thread (the distal portion and the proximal portion) and plaque showed distinct protein composition. Of the whole byssal protein set, 11 are exclusive to the plaque, 17 are exclusive to the proximal thread, and 5 are exclusive to the distal thread. Only four proteins are shared by all the three parts of the byssus. The new byssal proteins reported here represent a significant expansion of the knowledge base of Mytilus byssal proteins, and are important for further exploring the mechanism of adhesion in mussel.


Assuntos
Mytilus/anatomia & histologia , Proteínas/análise , Proteômica/métodos , Adesivos Teciduais/química , Animais , Mytilus/química , Proteoma/análise , Espectrometria de Massas em Tandem
7.
PLoS One ; 10(7): e0133913, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26218932

RESUMO

Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs) pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.


Assuntos
Exoesqueleto/metabolismo , Minerais/metabolismo , Proteoma/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Mytilus , Espectrometria de Massas em Tandem
8.
J Proteomics ; 122: 26-40, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25857279

RESUMO

Mytilus is an economically important bivalve and its shell is a biomineralized tissue with various microstructures/layers. In the present study, the shell of marine mussel, Mytilus coruscus, was analyzed and three shell layers with different morphologies and polymorphs were observed, which includes nacre, fibrous prism, and myostracum strongly attached by adductor muscles to the interior of the shell surface. In order to understand whether these different shell layers contain different shell matrix proteins (SMPs), the transcriptome sequencing of M. coruscus mantle and a parallel proteomic analysis of SMPs in the three shell layers were performed. A combination of LC-MS/MS analysis with the mantle transcriptome dataset search resulted in the identification of a total of 63 proteins from M. coruscus shell. From this protein set, fifteen, fourteen, and eight proteins were found to be unique to nacre, fibrous prism, and myostracum layers, respectively. In addition, many novel shell proteins were also identified. The data in this study could be used as a background to explore the roles of SMPs in the deposition of different shell layers (nacre vs. fibrous prism vs. myostracum), the different polymorphisms of calcium carbonate (aragonite vs. calcite); and further, the identified proteins from the myostracum could provide candidates for studying the mechanism of adductor muscle-shell attachment. BIOLOGICAL SIGNIFICANCE: In this paper, we characterized for the first time the protein set from different shell layers in Mytilus. Shell matrix proteins are the major component that controls different aspects of the shell formation process and thus a source of bioactive molecules that would offer interesting perspectives in biomaterials and biomedical fields. Our data can be used as a resource for further exploring the roles of shell matrix proteins in the deposition of different shell layers (nacre vs. fibrous prism vs. myostracum) or different polymorphisms of calcium carbonate (aragonite vs. calcite), and the identified protein set of myostracum provided candidates for studying the mechanism of adductor muscle-shell attachment.


Assuntos
Exoesqueleto/metabolismo , Bases de Dados de Proteínas , Mytilus/metabolismo , Proteoma/metabolismo , Proteômica , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Mytilus/genética , Proteoma/genética
9.
Fish Shellfish Immunol ; 41(2): 362-70, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245621

RESUMO

Using reverse phase high performance liquid chromatography (RP-HPLC), a novel antimicrobial peptide with 55 amino acid residues was isolated from the hemolymph of Mytilus coruscus. This new antimicrobial peptide displays predominant antimicrobial activity against fungi and Gram-positive bacteria. The molecular mass and the N-terminal sequence of this peptide were analyzed by Mass Spectrometry and Edman degradation, respectively. This antimicrobial peptide, with molecular mass of 6621.55 Da, is characterized by a chitin-biding domain and by 6 Cysteine residues engaged in three intra-molecular disulfide bridges. The full-length of cDNA sequence of this new peptide was obtained by rapid amplification of cDNA ends (RACE) and the encoded precursor was turn out to be a chitotriosidase-like protein. Therefore, we named the precursor with mytichitin-1 and the new antimicrobial peptide (designated as mytichitin-CB) is the carboxyl-terminal part of mytichitin-1. The mRNA transcripts of mytichitin-1 are mainly detected in gonad and the expression level of mytichitin-1 in gonad was up-regulated and reached the highest level at 12 h after bacterial challenge, which was 9-fold increase compared to that of the control group. These results indicated that mytichitin-1 was involved in the host immune response against bacterial infection and might contribute to the clearance of invading bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Quitina/metabolismo , Hemolinfa/metabolismo , Mytilus/química , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Fungos/efeitos dos fármacos , Gônadas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Funções Verossimilhança , Espectrometria de Massas , Modelos Genéticos , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Fish Shellfish Immunol ; 34(2): 610-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247103

RESUMO

Antimicrobial peptides (AMPs) are components of the innate immune responses that form the first line of host defense against pathogens. Marine mussels can produce a surprising abundance of cysteine-rich AMPs pertaining to the defensin, myticin, mytilin and mytimycin families, particularly in the circulating hemocytes. In the current study, we purified and characterized a novel cysteine-rich peptide with remarkable antibacterial activity from Mytilus coruscus and designated with myticusin-1, a 104-amino acid long polypeptide including 10 cysteine residues forming an unusual cysteine pattern. Antimicrobial assays demonstrated that myticusin-1 exhibited stronger anti-microbial properties against Gram-positive bacteria more than Gram-negative bacteria and fungus. Furthermore, myticusin-1 caused significant morphological alterations in both Sarcina luteus and Escherichia coli as shown by transmission electron microscopy (TEM). The cDNA of myticusin-1 was cloned and sequenced from the hemocytes cDNA library of M. coruscus. The mRNA transcripts of myticusin-1 are mainly detected in hemocyte, which indicates that myticusin-1 are specifically synthesized and stored in circulating hemocytes. The expression level of myticusin-1 in hemocytes was up-regulated and reached the highest level at 36 h after S. luteus challenge, which was 20-fold increase compared to that of the control group. These results indicated that myticusin-1 was involved in the host immune response against bacterial infection and might contribute to the clearance of invading bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/farmacologia , Imunidade Inata/imunologia , Mytilus/química , Animais , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/ultraestrutura , Hemócitos/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mytilus/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Sarcina/efeitos dos fármacos , Sarcina/ultraestrutura , Análise de Sequência de DNA , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...