Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(34): 11941-11948, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37575068

RESUMO

Heterojunction materials have become good candidates for electrocatalysts thanks to their unique physicochemical merits. Herein, a crystalline-amorphous CoP@Ni/Fe-P heterojunction is constructed for whole water splitting. Originating from the strong electronic reaction at the amorphous-crystal interfaces, the electron density of Co, Ni, Fe and P is adjusted, which will optimize the adsorption and desorption energy of intermediates for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) and lower the kinetic barrier. The CoP@Ni/Fe-P heterojunction displays overpotentials of 125 and 250 mV to drive a current density of 10 mA cm-2 in 1 M KOH. In addition, the whole water splitting performance requires a cell voltage of 1.56 V to deliver 10 mA cm-2 and shows good stability. This work provides a way to design and prepare transition-metal-based materials with good electrocatalytic activity by constructing a crystalline and amorphous heterojunction.

2.
Small Methods ; 6(10): e2200855, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070422

RESUMO

Electrocatalysis plays a fundamental role in many fields, such as metallurgy, medicine, chemical industry, and energy conversion. Anchoring active electrocatalysts with controllable loading and uniform dispersion onto suitable supports has become an attractive topic. This is because the supports can not only have the potential to improve catalytic activity and stability through the interaction between support and catalytic center, but also can reduce precious metal consumption by improving atomic utilization. Herein, recent theoretical and experimental progresses concerning the development of supports to anchor electrocatalytic materials are first reviewed. Next, their controllable syntheses, characterization techniques, metal-support electronic interactions, and structure-performance relationships are presented. Some representative carbon supports and non-carbonaceous supports, as well as recently reported star supports such as 2D supports, single atom catalysts, and self-supported catalysts are also summarized. In addition, the significant role of support in stabilizing and regulating catalytic active sites is particularly emphasized. Finally, challenges, opportunities, key problems, and further promising solutions for supported catalysts are proposed.


Assuntos
Metais , Catálise
3.
Chem Commun (Camb) ; 57(32): 3889-3892, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871491

RESUMO

A magnesiothermic reduction route has been presented to synthesize phase-pure germanides that are not readily available traditionally. The obtained ruthenium germanide (RuGe) serves as an efficient non-Pt electrocatalyst for hydrogen evolution, and its intrinsic activity is very close to that of Pt. Our combined theoretical and experimental study demonstrates that the remarkable performance is derived from the germanium-induced change in hydrogen site preference from hollow to efficient Ru top sites.

4.
Dalton Trans ; 49(44): 15568-15573, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33112324

RESUMO

The widespread use of proton-exchange membrane water electrolysis is limited by the dynamically sluggish oxygen evolution reaction (OER), which is mediated by noble iridium-based materials as active and stable electrocatalysts. Significant efforts have been made to decrease the amount of iridium in OER catalysts without sacrificing their catalytic performances. In this frontier paper, we present the main common issues relevant to the iridium-catalyzed OER, including catalytically active species, catalytic mechanisms and activity-stability relation. We also take iridium-based perovskites as an example, and summarize the recent theoretical and experimental advances in available strategies that can lead to highly efficient, low-iridium oxygen evolution electrocatalysts under acidic conditions. Finally, we propose the remaining challenges and future directions for exploring acidic OER catalysts.

5.
Inorg Chem ; 59(7): 5063-5071, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32186863

RESUMO

The designed synthesis of nanotwin architectures and thus-induced phase junctions expresses huge significance for semiconductor photocatalysts. However, current methods of producing nanotwins mainly involve high-temperature thermal treatment and tedious reaction steps, generally resulting in large bulk structure with ill-defined morphology and low specific surface area. Here, we propose a mild ligand-assisted coordinative self-assembly method to synthesize uniform mesoporous ZnxCd1-xS nanospheres with ultrahigh surface areas (148-312 m2 g-1) and controllable diameter (90-370 nm). Moreover, the sample possesses abundant phase junctions induced by nanotwins containing both hexagonal and cubic segments. With the synergy of the twin-induced phase junctions and high surface area, the as-prepared mesoporous Zn0.82Cd0.18S nanospheres exhibit a remarkable photocatalytic H2 evolution rate of 13.46 mmol h-1 g-1 with free noble metal. The mechanism of photocarrier dynamics was studied by transient photovoltage spectroscopy, manifesting that the photocarrier lifetime of Zn0.82Cd0.18S is largely prolonged and therefore improves the charge separation efficiency and photocatalytic activity.

6.
Mikrochim Acta ; 185(9): 433, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30155673

RESUMO

An electrochemical biosensor for determination of DNA is described that is based on the reaction of regulated DNA (reg-DNA) first with substrated DNA (subs-DNA) to form a reaction intermediate. The intermediate binds target DNA (T) by hybridization and initiates a branch migration leading to the production of complex of substrated DNA and target DNA (TC). Once TC is produced, it reacts with assisted DNA (ass-DNA) through a toehold exchange mechanism, yielding the product complex of substrated DNA and assisted DNA (CS). The target is then released back into the solution and and catalyzes the next cycle of toehold-exchange with the reaction intermediate of substrated DNA and regulated DNA (CPR). Unlike in a conventional DNA toehold that is hardwired with the branch migration domain, the allosteric DNA toehold is designed into a reg-DNA which is independent of the branch migration domain. Under the optimal experimental conditions and at a working potential as low as 0.18 V, response to DNA is linear in the 1 fM to 1000 pM concentration range, and the detection limit is 0.83 fM. The assay is highly specific and can discriminate target DNA even from a single-base mismatch. It was applied to the analysis of DNA spiked plasma samples. Graphical abstract Schematic illustration of the electrochemical strategy for target DNA detection based on regulation of DNA strand displacement using an allosteric DNA toehold strategy. It can be used to analyze DNA-spiked plasma samples and has a low detection limit of 0.83 fM.


Assuntos
Técnicas Biossensoriais/métodos , Sondas de DNA/química , DNA/análise , DNA/química , Regulação Alostérica , Sequência de Bases , DNA/sangue , Sondas de DNA/genética , Eletroquímica , Eletrodos , Humanos , Limite de Detecção , Hibridização de Ácido Nucleico
7.
Chemistry ; 24(48): 12600-12606, 2018 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888461

RESUMO

Much effort has been invested in the designed synthesis of zeolites with nanosized and hierarchical structures in recent decades, on account of increasing demands in practical applications, especially catalysis. Herein, a new topotactic synthetic strategy is demonstrated to synthesize nanosized and hierarchical zeolites in a one-step procedure. By using silica spheres as the adjustable amorphous precursors and tetrapropylammonium hydroxide as a structure-directing agent, effortless control of both size and porosity can be achieved in this system with no extra templates. With a simple hydrothermal process, hierarchical zeolite spheres can be modified with acid cites (Al species incorporated in the framework). Benefitting from its mesoporosity, palladium nanoparticles are incorporated into the nanosized hierarchical zeolite, which makes the materials suitable for use in a cascade catalysis reaction of benzimidazole derivatives, including independent acid catalysis and hydrogenation sites. The nanocomposites show exceptional activity and stability in catalysis and recycling reaction. This strategy can be developed into other versatile and practicable scaffolds for advanced zeolite catalytic nanoreactor systems.

8.
Nanoscale ; 10(12): 5731-5737, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29537010

RESUMO

With unique physical and chemical properties and porous architectures, mesoporous transition metal hydroxide (MMHO) and oxide (MMO) nanospheres hold great potential for various applications in drug delivery, catalysis, energy storage and conversion. However, synthesizing MMHO and MMO with well-defined mesostructures remains a great challenge because of the weak interaction between surfactants and metal precursors. Herein we describe a chelation-induced cooperative self-assembly system in which the weak interaction can be cooperatively amplified through the use of a chelating ligand acting as a co-template. Both MMHO and MMO nanospheres with tunable diameters and high surface areas can be readily synthesized via this strategy. The as-synthesized mesoporous ZnO nanospheres exhibit excellent photoelectric performance, and as a highly efficient oxygen evolution reaction (OER) catalyst of low cost, the calcined Cu(OH)2 nanospheres exhibit one of the best activities for the OER. Moreover, this cooperative method gives rise to an alternative to "classical" self-assembly methods for the preparation of mesostructured nanomaterials and, in some cases, the only viable synthetic route toward MMHO and MMO nanostructures.

9.
RSC Adv ; 8(26): 14663-14668, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-35540776

RESUMO

Herein, a single-step, rapid and homogenous fluorescence approach for highly sensitive and specific detection of CEA was successfully constructed for the first time using an aptamer binding-induced exonuclease III (Exo III)-mediated dual-amplification strategy. When present, CEA can specifically combine with the aptamer region in H1, resulting in a conformational change of H1 and the exposure of the occluded DNA fragment in the stem regions. Successively, the exposed DNA fragment partially hybridizes with H2 to initiate Exo III-assisted cycling cleavage to release another DNA fragment, which can in turn activate the cycling cleavage of the DNA fluorescence substrate (FS). Therefore, many fluorophore fragments are liberated to produce a significantly amplified fluorescence signal toward CEA detection. By virtue of the Exo III-assisted dual-amplification strategy, this method allows the detection of CEA at the fg mL-1 level with excellent selectivity. Compared with other reported strategies for CEA detection, the Exo III-assisted dual-amplification homogeneous platform only requires a one-step reaction, offering a very simple and low-cost detection. The practical ability of the developed strategy is demonstrated by the detection of CEA in human serum with satisfactory results. Thus, this method shows great potential in assays of many other biological analytes in clinical diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...