Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 316: 116736, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37286117

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qu-zhuo-tong-bi decoction (QZTBD) is a classic Chinese herbal medicine that has shown therapeutic efficacy in clinical practice against hyperuricemia and gout. However, the potential mechanisms of QZTBD remain poorly investigated. AIM OF THE STUDY: To assess the therapeutic effects of QZTBD on hyperuricemia and gout and to reveal its mechanisms of action. MATERIALS AND METHODS: A Uox-KO mouse model of hyperuricemia and gout was established, and QZTBD was administered at a dosage of 18.0 g/kg/d. Throughout the experimental period, the effects of QZTBD on gout symptoms were monitored and analyzed. The integrated network pharmacology and gut microbiota analysis strategy was conducted to explore the mechanism of QZTBD in the treatment of hyperuricemia and gout. Targeted metabolomic analysis was performed to investigate the variation of amino acids and Spearman's rank correlation analysis was conducted to reveal the relationship between the discrepant bacterial genera and the altered amino acid. Flow cytometry was utilized to analysis the proportion of Th17 and Treg cells, and the production of pro-inflammatory cytokines was measured by ELISA. qRT-PCR and Western blot assay were applied to detect the expression of mRNA and protein respectively. Autodock vina 1.1.2 was used to evaluate the docking interactions. RESULTS: QZTBD treatment showed remarkable efficacy against hyperuricemia and gout with respect to attenuation of disease activity metrics through gut microbiome recovery and intestinal immune homeostasis. The administration of QZTBD significantly elevated the abundance of Allobaculum and Candidatus sacchairmonas, corrected the aberrant amino acid patterns, repaired the impaired intestinal barrier, restored the balance of Th17/Treg cells via PI3K-AKT-mTOR pathway, and reduced the levels of inflammatory cytokines such as IL-1ß, IL-6, TNF-α and IL-17. Fecal microbiota transplantation from QZTBD treated mice demonstrated convincing evidence of efficacy and mechanism of QZTBD. CONCLUSION: Taken together, our study explores the therapeutic mechanism of an effective herbal formula, QZTBD, for gout treatment through remodeling gut microbiome and regulating the differentiation of CD4+ T cells via PI3K-AKT-mTOR pathway.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Gota , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Gota/tratamento farmacológico , Citocinas , Serina-Treonina Quinases TOR
2.
Front Immunol ; 13: 804306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197978

RESUMO

Although gut dysbiosis had been demonstrated to be an important factor affecting hyperuricemia (HUA) and gout, little is known for its potential mechanistic connections. In this study, Uox-KO mice model that with spontaneously developed pronounced HUA and urate nephropathy was used to explore the pathophysiologic mechanism of microbiota alterations in HUA and gout with integrated multi-omics analysis. 16S rRNA gene sequencing was performed to characterize the characteristic bacteria, and untargeted LC/MS analysis was applied to reveal the featured metabolites. Our results showed there was a significant shift in gut microbiota composition and function in Uox-KO mice compared to WT mice and apparent metabolomics differences between the two groups. Among them, amino acids metabolism appears to play a critical role. Correlation analysis further revealed that the characteristic metabolites were strongly influenced by the discrepant bacterial genera. Furthermore, impairment of intestinal integrity and profound alterations in the profile of solute carrier family resulted in dysregulation of amino acids transportation, which subsequently impacted serum uric acid level and CD4+ Th17 driven inflammation. Together, these data indicate that gut dysbiosis promotes purine metabolism disorder and inflammation in Uox-KO mice. Remodeling the gut microbiota is a promising strategy to combat HUA and gout.


Assuntos
Microbioma Gastrointestinal/genética , Aminoácidos , Animais , Disbiose/microbiologia , Gota , Hiperuricemia , Inflamação , Nefropatias , Metabolômica , Camundongos , RNA Ribossômico 16S/genética , Células Th17/metabolismo , Ácido Úrico/metabolismo
3.
RSC Adv ; 8(28): 15725-15739, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539456

RESUMO

Yindanxinnaotong capsule (YDXNT), a traditional Chinese formula, has been used to treat cardio-cerebrovascular diseases for several decades. Previous research has focused on evaluating the pharmacological properties and main compounds of YDXNT in vitro and in vivo. However, the multiple bioactive compounds in vivo remain poorly understood. In the present research, an integrative strategy using UPLC-Q-TOF-MS combined with UPLC-QqQ-MS was employed to detect the absorbed constituents and investigate the pharmacokinetics of main compounds in the plasma after oral administration of YDXNT. UPLC-Q-TOF-MS was developed to detect the absorbed constituents and their metabolites in the plasma after oral administration in rats. A total of 52 constituents, including 44 prototype compounds and 8 metabolites, were identified or tentatively characterized. Then, nine main compounds (quercetin, isorhamnetin, kaempferol, ginkgolide A, ginkgolide B, ginkgolide C, bilobalide, tanshinone IIA, and salvianolic acid B) were chosen to further investigate the pharmacokinetic behavior of YDXNT using UPLC-QqQ-MS. The concentration of nine main constituents were in the range of 27.85-76.54 ng mL-1. This research provides a systematic approach for rapid qualitative analysis of absorbed constituents and for evaluating the pharmacokinetics of the main ingredients of YDXNT following its oral administration. More importantly, this work provides key information on the identification of bioactive compounds and the clarification of their action mechanisms, as well as on the pharmacological actions of YDXNT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...