Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
ACS Nano ; 17(21): 21690-21707, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862095

RESUMO

Abnormal mechanical loading often leads to the progressive degradation of cartilage and causes osteoarthritis (OA). Although multiple mechanoresponsive strategies based on biomaterials have been designed to restore healthy cartilage microenvironments, methods to remotely control the on-demand mechanical forces for cartilage repair pose significant challenges. Here, a magneto-mechanically controlled mesenchymal stem cell (MSC) platform, based on the integration of intercellular mechanical communication and intracellular mechanosignaling processes, is developed for OA treatment. MSCs loaded with antioxidative melanin@Fe3O4 magnetic nanoparticles (Magcells) rapidly assemble into highly ordered cell clusters with enhanced cell-cell communication under a time-varying magnetic field, which enables long-term retention and differentiation of Magcells in the articular cavity. Subsequently, via mimicking the gait cycle, chondrogenesis can be further enhanced by the dynamic activation of mechanical signaling processes in Magcells. This sophisticated magneto-mechanical actuation strategy provides a paradigm for developing mechano-therapeutics to repair cartilage in OA treatment.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Condrogênese , Condrócitos/metabolismo , Osteoartrite/terapia , Diferenciação Celular
3.
J Mol Neurosci ; 73(11-12): 921-931, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864623

RESUMO

We aimed to investigate the mechanism underlying the roles of miRNA-377, Cystathionine-ß-synthase (CBS), and hydrogen sulfide (H2S) in the development of hypoxic-ischemic encephalopathy (HIE). We investigated the relationship between CBS, H2S, and miR-377 in both humans with HIE and animals with hypoxic-ischemic insult. An animal model of fetal rats with hypoxic-ischemic brain injury was established, and the fetal rats were randomly assigned to control and hypoxic-ischemic groups for 15 min (mild) and 30 min (moderate) groups. Human samples were collected from children diagnosed with HIE. Healthy or non-neurological disease children were selected as the control group. Hematoxylin-eosin (HE) staining, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot were used to conduct this study. Hypoxia-ischemia induced pathological alterations in brain tissue changes were more severe in groups with severe hypoxic insult. miRNA-377 expression levels were upregulated in brain tissue and serum of fetal rats and human samples with HIE compared to controls. Conversely, CBS and H2S expression levels were significantly decreased in both human and animal samples compared to controls. Our findings suggest that CBS is a target gene of miR-377 which may contribute to the development of HIE by regulating CBS/H2S. H2S has a protective effect against hypoxic damage in brain tissue. The study provides new insights into the potential mechanisms underlying the protective role of H2S in hypoxic brain damage and may contribute to the development of novel therapies for HIE.


Assuntos
Sulfeto de Hidrogênio , Hipóxia-Isquemia Encefálica , MicroRNAs , Criança , Humanos , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia-Isquemia Encefálica/genética , Cistationina , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Ratos Sprague-Dawley , Sulfeto de Hidrogênio/metabolismo
4.
Front Immunol ; 14: 1212330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614232

RESUMO

Background: Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. Methods: Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. Results: Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L, ISG15 and ITGB2 were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. Conclusion: This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.


Assuntos
Lúpus Eritematoso Sistêmico , Síndrome de Sjogren , Humanos , Análise da Expressão Gênica de Célula Única , Síndrome de Sjogren/genética , Homologia de Genes , Lúpus Eritematoso Sistêmico/genética , Antígenos CD18 , Biologia Computacional , Ubiquitina Tiolesterase
5.
Biomaterials ; 292: 121919, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455486

RESUMO

Activation of endogenous neurogenesis by bioactive materials enables restoration of sensory/motor function after complete spinal cord injury (SCI) via formation of new relay neural circuits. The underlying wiring logic of newborn neurons in adult central nervous system (CNS) is unknown. Here, we report neurotrophin3-loaded chitosan biomaterial substantially recovered bladder function after SCI. Multiple neuro-circuitry tracing technologies using pseudorabies virus (PRV), rabies virus (RV), and anterograde adeno-associated virus (AAV), demonstrated that newborn neurons were integrated into the micturition neural circuits and reconnected higher brain centers and lower spinal cord centers to control voiding, and participated in the restoration of the lower urinary tract function, even in the absence of long-distance axonal regeneration. Opto- and chemo-genetic studies further supported the notion that the supraspinal control of the lower urinary tract function was partially recovered. Our data demonstrated that regenerated relay neurons could be properly integrated into disrupted long-range neural circuits to restore function of adult CNS.


Assuntos
Herpesvirus Suídeo 1 , Traumatismos da Medula Espinal , Animais , Humanos , Recém-Nascido , Bexiga Urinária , Traumatismos da Medula Espinal/terapia , Neurônios , Medula Espinal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA