Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33333549

RESUMO

Protein complexes play important roles in most cellular processes. The available genome-wide protein-protein interaction (PPI) data make it possible for computational methods identifying protein complexes from PPI networks. However, PPI datasets usually contain a large ratio of false positive noise. Moreover, different types of biomolecules in a living cell cooperate to form a union interaction network. Because previous computational methods focus only on PPIs ignoring other types of biomolecule interactions, their predicted protein complexes often contain many false positive proteins. In this study, we develop a novel computational method idenPC-CAP to identify protein complexes from the RNA-protein heterogeneous interaction network consisting of RNA-RNA interactions, RNA-protein interactions and PPIs. By considering interactions among proteins and RNAs, the new method reduces the ratio of false positive proteins in predicted protein complexes. The experimental results demonstrate that idenPC-CAP outperforms the other state-of-the-art methods in this field.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteínas de Ligação a RNA , RNA , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Mol Inform ; 34(1): 8-17, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490858

RESUMO

Identification of DNA-binding proteins is an important problem in biomedical research as DNA-binding proteins are crucial for various cellular processes. Currently, the machine learning methods achieve the-state-of-the-art performance with different features. A key step to improve the performance of these methods is to find a suitable representation of proteins. In this study, we proposed a feature vector composed of three kinds of sequence-based features, including overall amino acid composition, pseudo amino acid composition (PseAAC) proposed by Chou and physicochemical distance transformation. These features not only consider the sequence composition of proteins, but also incorporate the sequence-order information of amino acids in proteins. The feature vectors were fed into Support Vector Machine (SVM) for DNA-binding protein identification. The proposed method is called PseDNA-Pro. Experiments on stringent benchmark datasets and independent test datasets by using the Jackknife test showed that PseDNA-Pro can achieve an accuracy of higher than 80 %, outperforming several state-of-the-art methods, including DNAbinder, DNA-Prot, and iDNA-Prot. These results indicate that the combination of various features for DNA-binding protein prediction is a suitable approach, and the sequence-order information among residues in proteins is relative for discrimination. For practical applications, a web-server of PseDNA-Pro was established, which is available from http://bioinformatics.hitsz.edu.cn/PseDNA-Pro/.


Assuntos
Proteínas de Ligação a DNA/genética , Bases de Dados de Proteínas , Análise de Sequência de Proteína/métodos , Máquina de Vetores de Suporte , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA