Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 332: 121872, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431388

RESUMO

Cotton is one of the oldest and most widely used natural fibers in the world. It enables a wide range of applications due to its excellent moisture absorption, thermal insulation, heat resistance, and durability. Benefiting from current developments in textile technology and materials science, people are constantly seeking more comfortable, more beautiful and more versatile cotton fabrics. As the second skin of body, clothing not only provides the basic needs of wear but also increases the protection of body against different environmental stimuli. In this article, a comprehensive review is proposed regarding research activities of systematically summarise the development and research of cotton fabric-based photocatalytic composites for the degradation of organic contaminants in the area of self-cleaning, degradation of gaseous contaminants, pathogenic bacteria or viruses, and chemical warfare agents. Specifically, we begin with a brief exposition of the background and significance of cotton fabric-based photocatalytic composites. Next, a systematical review on cotton fabric-based photocatalytic composites is provided according to their mechanisms and advanced applications. Finally, a simple summary and analysis concludes the current limitations and future directions in these composites for the degradation of organic contaminants.

2.
RSC Adv ; 14(7): 4301-4314, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38304558

RESUMO

Robust, hydrophobic woven cotton fabrics were obtained through the sol-gel dip coating of two different nanoparticle (NP) architectures; silica and silica-ZnO. Water repellency values as high as 148° and relatively low tilt angles for fibrous fabrics (12°) were observed, without the need for fluorinated components. In all cases, this enhanced functionality was achieved with the broad retention of water vapor permeability characteristics, i.e., less than 10% decrease. NP formation routes indicated direct bonding interactions in both the silica and silica-ZnO structures. The physico-chemical effects of NP-compatibilizer (i.e., polydimethoxysilane (PDMS) and n-octyltriethoxysilane (OTES) at different ratios) coatings on cotton fibres indicate that compatibilizer-NP interactions are predominantly physical. Whenever photoactive ZnO-containing additives were used, there was a minor decrease in hydrophobic character, but order of magnitude increases in UV-protective capability (i.e., UPF > 384); properties which were absent in non-ZnO-containing samples. Such water repellency and UPF capabilities were stable to both laundering and UV-exposure, resisting the commonly encountered UV-induced wettability transitions associated with photoactive ZnO. These results suggest that ZnO-containing silica NP coatings on cotton can confer both excellent and persistent surface hydrophobicity as well as UV-protective capability, with potential uses in wearables and functional textiles applications.

3.
R Soc Open Sci ; 9(6): 211894, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35706672

RESUMO

Symmetrical azobenzene derivatives with two catechol groups, 1d-4d, were synthesized as kinds of novel compounds, and the structures were confirmed using mass spectrometry and nuclear magnetic resonance spectroscopy. These compounds could attain photostationary state rapidly in solution upon UV irradiation, and their photochromism had good reversibility. Substituents and their positions on azobenzene chromophore had obvious influence on the maximum absorption and photochromic performances of these as-synthesized compounds. Electron-donating group on ortho positions could contribute to the redshift π-π* band. The sulfonamide group that is bonded to dopamine molecules and azobenzene rings caused a negligible n-π* transition of cis isomer, resulting in photobleaching upon UV irradiation. Among the four compounds, 4d had the strongest electron-donating ortho-methoxy substituents and lower planarity; thus its absorption could decrease more significantly upon UV irradiation of the same intensity, and its cis-to-trans conversion could be up to 63%. Furthermore, owing to the presence of catechol groups, 4d showed an effective affinity and adhesion to substrate, and on the surface of substrate, a weak colour change could be observed upon UV irradiation, but the reversibility was poorer than that in solution.

4.
ACS Omega ; 7(13): 11082-11091, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415376

RESUMO

Inspired by the application of dopamine as an "anchor" and UV absorber, novel sustainable colorants with biscatecholic structure were synthesized through a simple incorporation of simple azo chromophores with dopamine. Their structures were confirmed using MS and NMR analyses, and their application on textile materials was investigated. Compared to the simple azo chromophores with almost no coloring ability on fabrics, the biscatecholic colorants could color different fabrics effectively, mainly through self-polymerization only in the presence of a trace amount of organic base at room temperature, which is environmentally friendly in terms of saving resources and alleviating chemical pollution. Meanwhile, the UV resistance of colored fabrics was enhanced significantly, showing the advantage of protecting wearers from UV damage.

5.
Chemosphere ; 300: 134404, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35339519

RESUMO

Magnetic polydopamine (PDA) nanocomposites were prepared with a facile and sustainable synthetic method. The as-synthesized polymer-based hybrid composites inherited the intrinsic adhesiveness contributed by catechol and amino moieties of PDA as well as the magnetic property of Fe3O4. With the unique properties of PDA, the surface charges of Fe3O4@PDA could be easily tuned by pH for smart adsorption-desorption behaviors. Four commercially available dyestuffs including crystal violet, rhodamine B, direct blue 71 and orange G with different structures and surface charges in solution were selected to investigate the adsorption ability and universality of Fe3O4@PDA in wastewater treatment. It was found that the nanocomposites could successfully adsorb these cationic and anionic dyes under suitable pH conditions. This confirmed the ability of the nanoadsorbents for the removal of common textile dyes. The dispersed magnetic nanoadsorbents also demonstrated the ease of collection from dye mixtures, and the possibility of reusing them for several cycles. Selective dye separation was found to be achievable via simple charge control without large consumption of organic solvent and energy. These bio-inspired nanocomposite adsorbents have shown high potential in wastewater treatment and selective recovery of dye waste, especially for wastewater containing ionic dyes.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Corantes/química , Fenômenos Magnéticos , Nanocompostos/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA