Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(9): 670, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266534

RESUMO

Cancer cells autonomously alter metabolic pathways in response to dynamic nutrient conditions in the microenvironment to maintain cell survival and proliferation. A better understanding of these adaptive alterations may reveal the vulnerabilities of cancer cells. Here, we demonstrate that coactivator-associated arginine methyltransferase 1 (CARM1) is frequently overexpressed in gastric cancer and predicts poor prognosis of patients with this cancer. Gastric cancer cells sense a reduced extracellular glucose content, leading to activation of nuclear factor erythroid 2-related factor 2 (NRF2). Subsequently, NRF2 mediates the classic antioxidant pathway to eliminate the accumulation of reactive oxygen species induced by low glucose. We found that NRF2 binds to the CARM1 promoter, upregulating its expression and triggering CARM1-mediated hypermethylation of histone H3 methylated at R arginine 17 (H3R17me2) in the glucose-6-phosphate dehydrogenase gene body. The upregulation of this dehydrogenase, driven by the H3R17me2 modification, redirects glucose carbon flux toward the pentose phosphate pathway. This redirection contributes to nucleotide synthesis (yielding nucleotide precursors, such as ribose-5-phosphate) and redox homeostasis and ultimately facilitates cancer cell survival and growth. NRF2 or CARM1 knockdown results in decreased H3R17me2a accompanied by the reduction of glucose-6-phosphate dehydrogenase under low glucose conditions. Collectively, this study reveals a significant role of CARM1 in regulating the tumor metabolic switch and identifies CARM1 as a potential therapeutic target for gastric cancer treatment.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glucose , Fator 2 Relacionado a NF-E2 , Via de Pentose Fosfato , Proteína-Arginina N-Metiltransferases , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Via de Pentose Fosfato/genética , Glucose/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Linhagem Celular Tumoral , Animais , Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Camundongos Nus , Transcrição Gênica , Proliferação de Células/genética
2.
Commun Biol ; 7(1): 300, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461326

RESUMO

Diabetic foot ulcer (DFU), a serious complication of diabetes, remains a clinical challenge. MicroRNAs affect inflammation and may have therapeutic value in DFU. Here, we find that an miR-221-3p mimic reduces the inflammatory response and increases skin wound healing rates in a mouse model of diabetes, whereas miR-221-3p knockout produced the opposite result. In human keratinocytes cells, miR-221-3p suppresses the inflammatory response induced by high glucose. The gene encoding DYRK1A is a target of miR-221-3p. High glucose increases the expression of DYRK1A, but silencing DYRK1A expression decreases high glucose-induced inflammatory cytokine release via dephosphorylation of STAT3, a substrate of DYRK1A. Application of miR-221-3p mimic to human keratinocytes cells not only decreases DYRK1A expression but also inhibits high glucose-induced production of inflammatory cytokines to promote wound healing. This molecular mechanism whereby miR-221-3p regulates inflammation through the DYRK1A/STAT3 signaling pathway suggests targets and therapeutic approaches for treating DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , MicroRNAs , Animais , Humanos , Camundongos , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Glucose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Queratinócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Cicatrização/genética , Quinases Dyrk/metabolismo
3.
Materials (Basel) ; 16(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37895645

RESUMO

In hot and humid climates, asphalt pavements frequently encounter environmental factors such as elevated temperatures and rainfall, leading to rutting deformations and potholes, which can affect pavement performance. The primary objective of this study was to enhance the hydrothermal characteristics of asphalt mixtures through an investigation into the impact of anhydrous calcium sulfate whisker (ACSW) and polyester fiber (PF) on the hydrothermal properties of asphalt mixtures. In this paper, a central composite concatenation design (CCC) was employed to determine the optimal combination of ACSW and PF contents, as well as the asphalt aggregate ratio (AAR). Each influencing factor was assigned three levels for analysis. The evaluation indexes included dynamic stability, retained Marshall stability, and tensile strength ratio. Using the analysis methods of variance and gray correlation degree analysis, the hydrothermal properties of the asphalt mixture were examined in relation to the contents of ACSW, PF, and AAR based on the CCC results. Consequently, the optimal mix design parameters for composite modified asphalt mixture incorporating ACSW and PF were determined. The results indicated that the asphalt mixtures with hydrothermal qualities exhibited optimal performance in terms of 4.1% ARR, 11.84% ACSW, and 0.4% PF. The interaction between AAR and ACSW content had a greater effect on the dynamic stability and tensile strength ratio of the asphalt mixture, whereas the incorporation of ACSW and PF had a greater effect on the retained Marshall stability of the asphalt mixture. Among the three contributing factors, AAR exhibited the strongest relationship with the hydrothermal characteristics of the asphalt mixture, followed by the ACSW content; the correlation of PF content was the lowest. Therefore, to enhance the hydrothermal characteristics of the asphalt mixture, it is important to conduct a full evaluation of the constituents of ACSW and PF, along with the AAR in hot-humid regions.

4.
Materials (Basel) ; 16(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676331

RESUMO

In order to improve the properties of calcium sulfate anhydrous whisker (ACSW) and polyester fiber composite reinforced asphalt mixture (ACPRA) to meet the service requirements of pavement materials in low-temperature environments, the central composite circumscribed design (CCC), a kind of response surface methodology, was chosen to optimize the design parameters. Three independence variables, asphalt aggregate ratio, ACSW content, and polyester fiber content were adopted to evaluate the design parameters. Four responsive variables, air voids, Marshall stability, splitting tensile strength, and failure tensile strain, were chosen to study the volumetric and mechanical characteristics, and the low-temperature behavior of ACPRA by the Marshall test and indirect tensile test at -10 °C. The results showed that, taking low-temperature behavior optimization as the objective, the CCC method was practicable to optimize design of ACPRA, and the optimization design parameters were asphalt aggregate ratio of 4.0%, ACSW content of 10.8%, and polyester fiber content of 0.4%. Furthermore, the impact of three independence variables interactions on four response variables was also discussed, and it was identified that the interaction between asphalt aggregate ratio and ACSW content, and between asphalt aggregate ratio and polyester fiber content, has greater bearing on the splitting tensile strength and failure tensile strain of APCRA. Meanwhile, ACSW and polyester fiber enhancing the low-temperature behavior of APCRA was primarily connected with their contents.

5.
Analyst ; 146(6): 1996-2008, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33507168

RESUMO

A series of natural, environmentally friendly and low-cost menthol-based hydrophobic deep eutectic solvents (DES) were synthesized to extract and concentrate solutes from dilute aqueous solutions, especially triphenylmethane (TPM) dye micropollutants. The system has excellent extraction performance for TPM. Density functional theory (DFT) and molecular dynamics (MD) simulation were used to quantitatively analyze the effect of the DES composition and TPM structure on the distribution of target molecules in two phases. The solvation free energy of ethyl violet (EV) in DES (-17.128 to -21.681 kcal mol-1) is much larger than that in water (-0.411 kcal mol-1), and increases with the increase of the HBD chain length, which is proportional to the extraction rate, indicating that the TPM molecules are more inclined to the DES environment, especially long-chain DES, than aqueous solution. For the same C12DES, the extraction efficiency of the TPM dyes follows the order: ethyl violet (EV) (99.9%) > crystal violet (CV) (99.6%) > methyl violet (MV) (98.8%). EV has the smallest positive charge and the smallest dipole moment (9.109 D), and the Flory-Huggins parameters of EV (χEV-C12DES 0.053) relative to MV and CV are the smallest in C12DES, and are also the largest in water (χEV-H2O 0.053), indicating that EV has the largest polarity difference with H2O and is more easily detached from water and compatible with the long-chain DES phase. The motion of EV and MV on the phase interface of DES and water was calculated to further analyze from the molecular level. At the same time, EV tends to move into the DES phase. In summary, the excellent extraction ability of DES for TPM is verified through experiments and simulations, providing solid theoretical support in terms of separation in other fields.

6.
Cell Mol Biol (Noisy-le-grand) ; 66(6): 29-33, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33040781

RESUMO

The current study was carried out to investigate the role of wogonin in proliferation and invasion of skin epithelioid carcinoma cells as well as its underlying mechanisms. For this purpose, skin epithelioid carcinoma cells were treated with 0, 5, 10 and 20µmol/L wogonin for 24, 48, 72 hours. Cell proliferation was evaluated by an MTT assay. Cell invasion was assessed by the Transwell invasion assay. The Notch1 level was analyzed by RT-qPCR for mRNA and by Western blot for protein. Results showed that wogonin inhibited the proliferation and invasion of skin epithelioid carcinoma cells in a dose-dependent manner. Wogonin treatment significantly decreased the mRNA and protein levels of Notch1. Moreover, the inhibition of cell proliferation and invasion ability by wogonin treatment was dramatically attenuated after co-treatment with 20 ng/mL doxycycline, a specific Notch1 activator. In conclusion, wogonin may inhibit skin epithelioid carcinoma cell proliferation and invasion at least partially by repressing the Notch1 gene expression.


Assuntos
Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células Epitelioides/efeitos dos fármacos , Flavanonas/farmacologia , Invasividade Neoplásica/patologia , Receptor Notch1/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Epitelioides/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/patologia
7.
Oncol Lett ; 17(2): 1953-1961, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675260

RESUMO

The prognosis for patients with head and neck cancer (HNC) remains poor, owing to uncontrolled tumor invasion and metastasis. Epithelial-mesenchymal transition (EMT) serves an important role in this invasion and metastasis, and transient receptor potential polycystic 2 (TRPP2) enhances metastasis and invasion by regulating EMT in human laryngeal squamous cell carcinoma. The present study examined whether exosomes/TRPP2 small interfering RNA (siRNA) complexes were able to reduce EMT by suppressing TRPP2 expression in FaDu cells, a cell line of human pharyngeal squamous cell carcinoma. Using agarose gel electrophoresis, it was determined that exosome/TRPP2 siRNA complexes were stable in the presence of nucleases and serum. A fluorescence assay and western blotting analysis was performed, and it was reported that the FaDu cells took up exosomes, the exosomes effectively delivered TRPP2 siRNA into FaDu cells and that exosome/TRPP2 siRNA complexes significantly suppressed TRPP2 protein expression levels in FaDu cells. Furthermore, expression levels of E-cadherin were significantly increased, whereas expression levels of N-cadherin and vimentin were significantly decreased in FaDu cells transfected with TRPP2 siRNA. Thus, exosome/TRPP2 siRNA complexes markedly suppressed TRPP2 expression and EMT in FaDu cells. These results suggested that further development of exosome/TRPP2 siRNA complexes for use as an RNA-based gene therapy in the treatment of HNC is warranted.

8.
Biosens Bioelectron ; 99: 201-208, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28759870

RESUMO

In this paper, we reported a sensitive and selective electrochemical method for quantify DNA methylation, analyzing DNA MTase activity and screening of MTase inhibitor based on silver nanoparticles (Ag NPs) decorated carbon nanocubes (CNCs) as signal tag. The Ag NPs/CNCs was prepared by in situ growth of nanosilver on carboxylated CNCs and used as a tracing tag to label antibody. The sensor was prepared by immobilizing the double DNA helix structure on the surface of gold electrode. When DNA MTase was introduced, the probe was methylated. Successively, anti-5-methylcytosine antibody labeled Ag NPs/CNCs was specifically conjugated on the CpG methylation site. The electrochemical stripping signal of the Ag NPs was used to monitor the activity of MTase. The electrochemical signal has a linear relationship with M.SssI activities ranging from 0.05 to 120U/mL with a detection limit of 0.03U/mL. In addition, we also demonstrated the method could be used for rapid evaluation and screening of the inhibitors of MTase. The newly designed strategy avoid the requirement of deoxygenation for electrochemical assay, and thus provide a promising potential in clinical application.


Assuntos
Técnicas Biossensoriais , Metilação de DNA/genética , Metilases de Modificação do DNA/isolamento & purificação , Técnicas Eletroquímicas , Carbono/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Prata/química
9.
Biosens Bioelectron ; 96: 62-67, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28460333

RESUMO

We describe a novel label-free and signal-on electrochemical DNA sensing platform via proximity hybridization triggered hemin/G-quadruplex formation based on the direct electron transfer of hemin. The thiolated modified G-DNA1 was first immobilized onto the Au electrode surface. In the presence of target DNA, Y-junction-structure ternary complex can be formed to trigger the proximity assembly of G-DNA1, hemin, and G-DNA2, which leads to the formation of hemin/G-quadruplex for generation an amplified electrochemical signal by differential pulse voltammetry. The observed signal gain was sufficient to achieve a demonstrated detection limit of 54 fM, with a wide linear dynamic range from 10-13 to 10-9 M and discriminated mismatched DNA from perfect matched target DNA with a high selectivity. Benefiting from the one step proximity dependent hemin/G-quadruplex formation, the assay method is extremely simple and can be carried out within 40min. The advantages of free of any label conjugation step, and versatility make it a promising candidate for point-of-care testing and commercial application.


Assuntos
Técnicas Biossensoriais/métodos , DNA/análise , Técnicas Eletroquímicas/métodos , Quadruplex G , Hemina/química , Eletrodos , Transporte de Elétrons , Ouro/química , Limite de Detecção , Hibridização de Ácido Nucleico/métodos , Oxirredução , Sensibilidade e Especificidade , Propriedades de Superfície
10.
Cell Physiol Biochem ; 39(6): 2203-2215, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832627

RESUMO

BACKGROUND/AIM: Surgery and chemotherapy treatments of human laryngeal squamous cell carcinoma (HLSCC) may fail due to metastasis, in which epithelial-mesenchymal transition (EMT) plays an important role. TRPP2, a nonselective cation channel, is expressed in various cell types and participates in many biological processes. Here, we show that TRPP2 enhanced metastasis by regulating EMT. METHODS: We used immunohistochemistry, western blotting, Ca2+ imaging, transwell and wound healing assays to investigate TRPP2 expression levels in HLSCC tissue, and the role of TRPP2 in invasion and metastasis of a human laryngocarcinoma cell line (Hep2 cell). RESULTS: We found that TRPP2 protein expression levels were significantly increased in HLSCC tissue; higher TRPP2 levels were associated with decreased patient survival time and degree of differentiation and advanced clinical stage. Knockdown of TRPP2 by transfection with TRPP2 siRNA markedly suppressed ATP-induced Ca2+ release, wound healing, and cell invasion in Hep2 cells. Moreover, TRPP2 siRNA significantly decreased vimentin expression but increased E-cadherin expression in Hep2 cells. In the EMT signalling pathway, TRPP2 siRNA significantly decreased Smad4, STAT3, SNAIL, SLUG and TWIST expression in Hep2 cells. CONCLUSION: We revealed a previously unknown function of TRPP2 in cancer development and a TRPP2-dependent mechanism underlying laryngocarcinoma cell invasion and metastasis. Our results suggest that TRPP2 may be used as a biomarker for evaluating patient prognosis and as a novel therapeutic target in HLSCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Transição Epitelial-Mesenquimal , Neoplasias Laríngeas/patologia , Canais de Cátion TRPP/metabolismo , Caderinas/metabolismo , Cálcio/metabolismo , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Laríngeas/genética , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Proteína Smad4/metabolismo , Análise de Sobrevida , Canais de Cátion TRPP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA