Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(39): 15885-15905, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755133

RESUMO

Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.

2.
Anal Sci ; 39(11): 1839-1856, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517003

RESUMO

Countless individuals have fallen victim to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have generated antibodies, reducing the risk of secondary infection in the short term. However, with the emergence of mutated strains, the probability of subsequent infections remains high. Consequently, the demand for simple and accessible methods for distinguishing between different variants is soaring. Although monitoring viral gene sequencing is an effective approach for differentiating between various types of SARS-CoV-2 variants, it may not be easily accessible to the general public. In this article, we provide an overview of the reported techniques that use combined approaches and adaptable testing methods that use editable recognition receptors for simultaneous detection and distinction of current and emerging SARS-CoV-2 variants. These techniques employ straightforward detection strategies, including tests capable of simultaneously identifying and differentiating between different variants. Furthermore, we recommend advancing the development of uncomplicated protocols for distinguishing between current and emerging variants. Additionally, we propose further development of facile protocols for the differentiation of existing and emerging variants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...