Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 301(6): 1115-1125, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29350822

RESUMO

Rotenone is a common pesticide and has been reported as one of the risk factors for Parkinson disease. Rotenone can cause neuronal death or apoptosis through inducing oxidative injury and inhibiting mitochondrial function. As a natural polyphenolic compound, resveratrol possesses the antioxidant capacity and neuroprotective effect. However, the mechanism underlying the neuroprotective effect of resveratrol against rotenone-induced neurotoxicity remains elusive. Here, we treated PC12 cells with rotenone to induce neurotoxicity, and the neurotoxic cells were subjected to resveratrol treatment. The CCK8 and LDH activity assays demonstrated that resveratrol could suppress neurotoxicity induced by rotenone (P < 0.01). The DCFH-DA assay indicated that resveratrol reduced the production of reactive oxygen species (ROS). JC-1 and Hoechst 33342/PI staining revealed that resveratrol attenuated mitochondrial dysfunction and cell apoptosis. Moreover, resveratrol reversed rotenone-induced decrease in SIRT1 expression and Akt1 phosphorylation (P < 0.05). Furthermore, when the SIRT1 and Akt1 activity was inhibited by niacinamide and LY294002, respectively, the neuroprotective effect of resveratrol was remarkably attenuated, which implied that SIRT1 and Akt1 could mediate this process and may be potential molecular targets for intervening rotenone-induced neurotoxicity. In summary, our study demonstrated that resveratrol reduced rotenone-induced oxidative damage, which was partly mediated through activation of the SIRT1/Akt1 signaling pathway. Our study launched a promising avenue for the potential application of resveratrol as a neuroprotective therapeutic agent in Parkinson disease. Anat Rec, 301:1115-1125, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Resveratrol/farmacologia , Rotenona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26681969

RESUMO

Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 µM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p < 0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p < 0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...