Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Heliyon ; 10(9): e30342, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707412

RESUMO

Purpose: To comprehensively understand the effects of intra-operative infusion of magnesium sulfate on patients who underwent orthognathic surgery, including remifentanil consumption, postoperative pain, postoperative nausea and vomiting (PONV), inflammatory response, and serum magnesium levels. Methods: Seventy-five adult patients undergoing orthognathic surgery under general balanced anesthesia were randomly divided into two groups. One group (Group M) received 50 mg/kg of magnesium sulfate in 20 mL 0.9 % saline after intubation, followed by a continuous infusion at a rate of 15 mg/kg/h until 30 min before the anticipated end of surgery. The other group (Group C) received an equal volume of isotonic saline as a placebo. (Clinical trial registration number: chiCTR2100045981). Results: The primary outcome was remifentanil consumption. The secondary outcomes included the pain score assessed using the verbal numerical rating scale (VNRS) and PONV assessed using a Likert scale. Remifentanil comsumption in Group M was lower than Group C (mean ± SD: 0.146 ± 0.04 µg/kg/min vs. 0.173 ± 0.04 µg/kg/min, P = 0.003). At 2 h after surgery, patients in Group C suffered more severe PONV than those in Group M (median [interquartile range, IQR]: 1 [3] vs. 1 [0], mean rank: 31.45 vs. 42.71, P = 0.040). At post-anesthesia care unit (PACU), postoperative pain in Group C was severe than Group M (3 [1] vs. 3 [0], mean rank: 31.45 vs. 42.71, P = 0.013). Changes in haemodynamics and surgical field scores did not differ between the groups (all P > 0.05). The levels of cytokines (IL-4, IL-6, IL-8, IL-10, TNF-a, and MIP-1ß) were not significantly different between the groups after surgery (all P > 0.05). Postoperative serum magnesium levels in Group C were lower than those in Group M (0.74 ± 0.07 mmol/L vs. 0.91 ± 0.08 mmol/L, P = 0.000) and the preoperative level (0.74 ± 0.07 mmol/L vs. 0.83 ± 0.06 mmol/L, P = 0.219). Conclusions: In orthognathic surgery, magnesium sulfate administration can reduce remifentanil requirement and relieve PONV and postoperative pain in the early postoperative phase.

2.
Oral Dis ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622872

RESUMO

OBJECTIVES: Acute and chronic orofacial pain are very common and remain a vexing health problem that has a negative effect on the quality of life. Serotonin (5-HydroxyTryptamine, 5-HT) is a kind of monoamine neurotransmitter that is involved in many physiological and pathological processes. However, its role in orofacial pain remains inconclusive. Therefore, this review aims to summarize the recent advances in understanding the effect exerted by 5-HT on the modulation of orofacial pain. SUBJECTS AND METHODS: An extensive search was conducted on PubMed and Web of Science for pertinent studies focusing on the effects of 5-HT on the modulation of orofacial pain. RESULTS: In this review, we concisely review how 5-HT mediates orofacial pain, how 5-HT is regulated and how we can translate these findings into clinical applications for the prevention and/or treatment of orofacial pain. CONCLUSIONS: 5-HT plays a key role in the modulation of orofacial pain, implying that 5-HT modulators may serve as effective treatment for orofacial pain. However, further research on the precise mechanisms underlying the modulation of orofacial pain is still warranted.

3.
Inflamm Res ; 72(9): 1895-1907, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37688642

RESUMO

Perioperative neurocognitive disorder (PND) is a common disorder following anesthesia and surgery, especially in the elderly. The complex cellular and molecular processes are involved in PND, but the underlying pathogenesis of which remains inconclusive due to conflicting data. A growing body of evidence has been shown that perioperative systemic inflammation plays important roles in the development of PND. We reviewed the relevant literature retrieved by a search in the PubMed database (on July 20, 2023). The search terms used were "delirium", "post operative cognitive dysfunction", "perioperative neurocognitive disorder", "inflammation" and "systemic", alone and in combination. All articles identified were English-language, full-text papers. The ones cited in the review are those that make a substantial contribution to the knowledge about systemic inflammation and PNDs. The aim of this review is to bring together the latest evidence for the understanding of how perioperative systemic inflammation mediates neuroinflammation and brain injury, how the inflammation is regulated and how we can translate these findings into prevention and/or treatment for PND.


Assuntos
Transtornos Neurocognitivos , Doenças Neuroinflamatórias , Humanos , Idoso , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/patologia , Transtornos Neurocognitivos/prevenção & controle , Inflamação/prevenção & controle
4.
Life Sci ; 332: 122130, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769809

RESUMO

Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.

5.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175415

RESUMO

Odontoblastic differentiation of human dental pulp stem cells (hDPSCs) is crucial for the intricate formation and repair processes in dental pulp. Until now, the literature is not able to demonstrate the role of ubiquitination in the odontoblastic differentiation of hDPSCs. This study investigated the role of F-box-only protein 32 (FBXO32), an E3 ligase, in the odontoblastic differentiation of hDPSCs. The mRNA expression profile was obtained from ribonucleic acid sequencing (RNA-Seq) data and analyzed. Immunofluorescence and immunohistochemical staining identify the FBXO32 expression in human dental pulp and hDPSCs. Small-hairpin RNA lentivirus was used for FBXO32 knockdown and overexpression. Odontoblastic differentiation of hDPSCs was determined via alkaline phosphatase activity, Alizarin Red S staining, and mRNA and protein expression levels were detected using real-time quantitative polymerase chain reaction and Western blotting. Furthermore, subcutaneous transplantation in nude mice was performed to evaluate the role of FBXO32 in mineralization in vivo using histological analysis. FBXO32 expression was upregulated in the odontoblast differentiated hDPSCs as evidenced by RNA-Seq data analysis. FBXO32 was detected in hDPSCs and the odontoblast layer of the dental pulp. Increased FBXO32 expression in hDPSCs during odontoblastic differentiation was confirmed. Through lentivirus infection method, FBXO32 downregulation in hDPSCs attenuated odontoblastic differentiation in vitro and in vivo, whereas FBXO32 upregulation promoted the hDPSCs odontoblastic differentiation, without affecting proliferation and migration. This study demonstrated, for the first time, the promotive role of FBXO32 in regulating the odontoblastic differentiation of hDPSCs, thereby providing novel insights into the regulatory mechanisms during odontoblastic differentiation in hDPSCs.


Assuntos
Polpa Dentária , Células-Tronco , Animais , Humanos , Camundongos , Diferenciação Celular/genética , Proliferação de Células , Células Cultivadas , Camundongos Nus , Proteínas Musculares/metabolismo , RNA Mensageiro/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Células-Tronco/metabolismo
6.
Front Neurosci ; 17: 1176654, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250405

RESUMO

Introduction: Clinical studies have revealed the existence of circadian rhythms in pain intensity and treatment response for chronic pain, including orofacial pain. The circadian clock genes in the peripheral ganglia are involved in pain information transmission by modulating the synthesis of pain mediators. However, the expression and distribution of clock genes and pain-related genes in different cell types within the trigeminal ganglion, the primary station of orofacial sensory transmission, are not yet fully understood. Methods: In this study, data from the normal trigeminal ganglion in the Gene Expression Omnibus (GEO) database were used to identify cell types and neuron subtypes within the human and mouse trigeminal ganglion by single nucleus RNA sequencing analysis. In the subsequent analyses, the distribution of the core clock genes, pain-related genes, and melatonin and opioid-related genes was assessed in various cell clusters and neuron subtypes within the human and mouse trigeminal ganglion. Furthermore, the statistical analysis was used to compare the differences in the expression of pain-related genes in the neuron subtypes of trigeminal ganglion. Results: The present study provides comprehensive transcriptional profiles of core clock genes, pain-related genes, melatonin-related genes, and opioid-related genes in different cell types and neuron subtypes within the mouse and human trigeminal ganglion. A comparative analysis of the distribution and expression of the aforementioned genes was conducted between human and mouse trigeminal ganglion to investigate species differences. Discussion: Overall, the results of this study serve as a primary and valuable resource for exploring the molecular mechanisms underlying oral facial pain and pain rhythms.

7.
Stem Cell Rev Rep ; 19(6): 1659-1675, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37178226

RESUMO

Yes associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are ubiquitous transcriptional co-activators that control organ development, homeostasis, and tissue regeneration. Current in vivo evidence suggests that YAP/TAZ regulates enamel knot formation during murine tooth development, and is indispensable for dental progenitor cell renewal to support constant incisor growth. Being a critical sensor for cellular mechano-transduction, YAP/TAZ lays at the center of the complex molecular network that integrates mechanical cues from the dental pulp chamber and surrounding periodontal tissue into biochemical signals, dictating in vitro cell proliferation, differentiation, stemness maintenance, and migration of dental stem cells. Moreover, YAP/TAZ-mediated cell-microenvironment interactions also display essential regulatory roles during biomaterial-guided dental tissue repair and engineering in some animal models. Here, we review recent advances in YAP/TAZ functions in tooth development, dental pulp, and periodontal physiology, as well as dental tissue regeneration. We also highlight several promising strategies that harness YAP/TAZ activation for promoting dental tissue regeneration.


Assuntos
Transdução de Sinais , Transativadores , Animais , Camundongos , Diferenciação Celular , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
8.
J Pineal Res ; 74(4): e12865, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36864655

RESUMO

Tooth development is a complex process that is tightly controlled by circadian rhythm. Melatonin (MT) is a major hormonal regulator of the circadian rhythm, and influences dentin formation and odontoblastic differentiation during tooth development; however, the underlying mechanism remains elusive. This study investigated how MT regulates odontoblastic differentiation, with a special focus on its regulation of mitochondrial dynamics. In rat dental papilla cells (DPCs), we found that MT promotes odontoblastic differentiation concurrently with enhanced mitochondrial fusion, while disruption of mitochondrial fusion by depleting optic atrophy 1 (OPA1) impairs MT-mediated differentiation and mitochondrial respiratory functions. Through RNA sequencing, we discovered that MT significantly upregulated malic enzyme 2 (ME2), a mitochondrial NAD(P)+ -dependent enzyme, and identified ME2 as a critical MT downstream effector that orchestrates odontoblastic differentiation, mitochondrial fusion, and respiration functions. By detecting the spatiotemporal expression of ME2 in developing tooth germs, and using tooth germ reconstituted organoids, we also provided in vivo and ex vivo evidence that ME2 promotes dentin formation, indicating a possible involvement of ME2 in MT-modulated tooth development. Collectively, our findings offer novel understandings regarding the molecular mechanism by which MT affects cell differentiation and organogenesis, meanwhile, the critical role of ME2 in MT-regulated mitochondrial functions is also highlighted.


Assuntos
Melatonina , Animais , Ratos , Diferenciação Celular , Polpa Dentária , Melatonina/metabolismo , Dinâmica Mitocondrial , Odontoblastos/metabolismo , Respiração , Malato Desidrogenase/metabolismo
9.
Front Mol Neurosci ; 16: 1117065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818656

RESUMO

Satellite glial cells (SGCs) play an important role in regulating the function of trigeminal ganglion (TG) neurons. Multiple mediators are involved in the bidirectional communication between SGCs and neurons in different physiological and pathological states. However, molecular insights into the transcript characteristics of SGCs are limited. Moreover, little is known about the heterogeneity of SGCs in TG, and a more in-depth understanding of the interactions between SGCs and neuron subtypes is needed. Here we show the single-cell RNA sequencing (scRNA-seq) profile of SGCs in TG under physiological conditions. Our results demonstrate TG includes nine types of cell clusters, such as neurons, SGCs, myeloid Schwann cells (mSCs), non-myeloid Schwann cells (nmSCs), immune cells, etc., and the corresponding markers are also presented. We reveal the signature gene expression of SGCs, mSCs and nmSCs in the TG, and analyze the ligand-receptor pairs between neuron subtypes and SGCs in the TG. In the heterogeneity analysis of SGCs, four SGCs subtypes are identified, including subtypes enriched for genes associated with extracellular matrix organization, immediate early genes, interferon beta, and cell adhesion molecules, respectively. Our data suggest the molecular characteristics, heterogeneity of SGCs, and bidirectional interactions between SGCs and neurons, providing a valuable resource for studying SGCs in the TG.

10.
Cell Mol Neurobiol ; 43(2): 511-523, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35179680

RESUMO

The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.


Assuntos
Relógios Circadianos , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia
11.
J Periodontal Res ; 58(1): 53-69, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36373245

RESUMO

BACKGROUND AND OBJECTIVE: Melatonin plays an important role in various beneficial functions, including promoting differentiation. However, effects on osteogenic differentiation, especially in human periodontal cells (hPDLCs), still remain inconclusive. Mitochondria are highly dynamic organelles that play an important role in various biological processes in cells, including energy metabolism and oxidative stress reaction. Furthermore, the translocase of the outer mitochondrial membrane 20 (TOM20) is responsible for recognizing and transporting precursor proteins. Thus, the objective of this study was to evaluate the functionality of melatonin on osteogenesis in human periodontal cells and to explore the involved mechanism of mitochondria. METHODS: The hPDLCs were extracted and identified by flow cytometry and multilineage differentiation. We divided hPDLCs into control group, osteogenic induction group, and osteogenesis with melatonin treatment group (100, 10, and 1 µM). Then we used a specific siRNA to achieve interference of TOM20. Alizarin red and Alkaline phosphatase staining and activity assays were performed to evaluate osteogenic differentiation. Osteogenesis-related genes and proteins were measured by qPCR and western blot. Mitochondrial functions were tested using ATP, NAD+/NADH, JC-1, and Seahorse Mito Stress Test kits. Finally, TOM20 and mitochondrial dynamics-related molecules expression were also assessed by qPCR and western blot. RESULTS: Our results showed that melatonin-treated hPDLCs had higher calcification and ALP activity as well as upregulated OCN and Runx2 expression at mRNA and protein levels, which was the most obvious in 1 µM melatonin-treated group. Meanwhile, melatonin supplement elevated intracellular ATP production and mitochondrial membrane potential by increasing mitochondrial oxidative metabolism, hence causing a lower NAD+ /NADH ratio. In addition, we also found that melatonin treatment raised TOM20 level and osteogenesis and mitochondrial functions were both suppressed after knocking down TOM20. CONCLUSION: We found that melatonin promoted osteogenesis of hPDLCs and 1 µM melatonin had the most remarkable effect. Melatonin treatment can reinforce mitochondrial functions by upregulating TOM20.


Assuntos
Melatonina , Osteogênese , Humanos , Trifosfato de Adenosina , Diferenciação Celular , Células Cultivadas , Melatonina/farmacologia , Mitocôndrias , Membranas Mitocondriais/metabolismo , NAD/metabolismo , Osteogênese/genética , Ligamento Periodontal
12.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362158

RESUMO

Recent studies have indicated a central role for LonP1 in mitochondrial function. Its physiological functions include proteolysis, acting as a molecular chaperone, binding mitochondrial DNA, and being involved in cellular respiration, cellular metabolism, and oxidative stress. Given its vital role in energy metabolism, LonP1 has been suggested to be associated with multi-system neoplasms and developmental disorders. In this study, we investigated the roles, possible mechanisms of action, and therapeutic roles of LonP1 in oral and maxillofacial tumor development. LonP1 was highly expressed in oral-maxillofacial cancers and regulated their development through a sig-naling network. LonP1 may therefore be a promising anticancer therapy target. Mutations in LONP1 have been found to be involved in the etiology of cerebral, ocular, dental, auricular, and skeletal syndrome (CODAS). Only patients carrying specific LONP1 mutations have certain dental abnormalities (delayed eruption and abnormal morphology). LonP1 is therefore a novel factor in the development of oral and maxillofacial tumors. Greater research should therefore be conducted on the diagnosis and therapy of LonP1-related diseases to further define LonP1-associated oral phenotypes and their underlying molecular mechanisms.


Assuntos
Proteínas Mitocondriais , Neoplasias , Humanos , Proteases Dependentes de ATP/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , DNA Mitocondrial/metabolismo
13.
J Inflamm Res ; 15: 6263-6274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386581

RESUMO

Background: The sympathetic nervous system (SNS) is suggested to be involved in some forms of pain, but the mechanisms of which are incompletely known. Moreover, there is a lack of information on the regulatory role of the SNS on macrophages in sensory ganglion, which plays an important role in pain development. The present study aims to investigate the effects of the SNS on orofacial inflammatory pain and examine, if any, how the SNS influences trigeminal ganglion (TG) macrophage responses. Methods: Sympathectomy was performed on male C57BL/6 mice before receiving a local injection of Complete Freund's adjuvant (CFA) to induce inflammatory pain. Effects of sympathectomy on orofacial pain were examined by Von Frey test and c-Fos expression. Polarization of TG macrophage was evaluated by immunohistochemistry and the level of norepinephrine (NE) in the TG were determined by liquid chromatography. Sympathetic signaling to TG macrophages were predicted based on single-cell analysis. Results: CFA injection induced a significant increase in mechanical allodynia, the number of c-Fos-positive neuron, and the level of NE in TG, which were largely reduced by sympathectomy. The number of M1 macrophages was markedly increased by CFA and was largely reduced by sympathectomy from 1 to 14 days post-injection. Single-cell RNA sequencing analysis and immunofluorescence staining showed that TG macrophages mainly express ß2 adrenergic receptors for NE. Cell-cell communication analysis predicted sympathetic signaling that may modulate macrophage phenotypes, including Colony-stimulating factor-1, Migration inhibitory factor, Pleiotrophin and Nicotinamide phosphoribosyl transferase. Conclusion: The SNS may involve in CFA-induced mechanical allodynia via modulating macrophage phenotypes in the TG. Targeting sympathetic activation might be useful in treating some painful conditions in the orofacial region.

14.
Front Neurosci ; 16: 929136, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440288

RESUMO

Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.

15.
Front Mol Neurosci ; 15: 1038539, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311028

RESUMO

Trigeminal ganglion (TG) is the first station of sensory pathways in the orofacial region. The TG neurons communicate with satellite glial cells (SGCs), macrophages and other cells forming a functional unit that is responsible for processing of orofacial sensory information. Purinergic signaling, one of the most widespread autocrine and paracrine pathways, plays a crucial role in intercellular communication. The multidirectional action of purinergic signaling in different cell types contributes to the neuromodulation and orofacial sensation. To fully understand the purinergic signaling in these processes, it is essential to determine the shared and unique expression patterns of genes associated with purinergic signaling in different cell types. Here, we performed single-cell RNA sequencing of 22,969 cells isolated from normal mouse TGs. We identified 18 distinct cell populations, including 6 neuron subpopulations, 3 glial subpopulations, 7 immune cell subpopulations, fibroblasts, and endothelial cells. We also revealed the transcriptional features of genes associated with purinergic signaling, including purinergic receptors, extracellular adenosine triphosphate (eATP) release channels, eATP metabolism-associated enzymes, and eATP transporters in each cell type. Our results have important implications for understanding and predicting the cell type-specific roles of the purinergic signaling in orofacial signal processing in the trigeminal primary sensory system.

16.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077334

RESUMO

Protein ubiquitination is a precisely controlled enzymatic cascade reaction belonging to the post-translational modification of proteins. In this process, E3 ligases catalyze the binding of ubiquitin (Ub) to protein substrates and define specificity. The neuronally expressed developmentally down-regulated 4 (NEDD4) subfamily, belonging to the homology to E6APC terminus (HECT) class of E3 ligases, has recently emerged as an essential determinant of multiple cellular processes in different tissues, including bone and tooth. Here, we place special emphasis on the regulatory role of the NEDD4 subfamily in the molecular and cell biology of osteogenesis. We elucidate in detail the specific roles, downstream substrates, and upstream regulatory mechanisms of the NEDD4 subfamily. Further, we provide an overview of the involvement of E3 ligases and deubiquitinases in the development, repair, and regeneration of another mineralized tissue-tooth.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Estrutura Terciária de Proteína , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Front Cell Neurosci ; 16: 885569, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722619

RESUMO

Orofacial inflammation leads to transcriptional alterations in trigeminal ganglion (TG) neurons. However, diverse alterations and regulatory mechanisms following orofacial inflammatory pain in different types of TG neurons remain unclear. Here, orofacial inflammation was induced by injection of complete Freund's adjuvant (CFA) in mice. After 7 days, we performed single-cell RNA-sequencing on TG cells of mice from control and treatment groups. We identified primary sensory neurons, Schwann cells, satellite glial cells, oligodendrocyte-like cells, immune cells, fibroblasts, and endothelial cells in TG tissue. After principal component analysis and hierarchical clustering, we identified six TG neuronal subpopulations: peptidergic nociceptors (PEP1 and PEP2), non-peptidergic nociceptors (NP1 and NP2), C-fiber low-threshold mechanoreceptors (cLTMR) and myelinated neurons (Nefh-positive neurons, NF) based on annotated marker gene expression. We also performed differential gene expression analysis among TG neuronal subtypes, identifying several differential genes involved in the inflammatory response, neuronal excitability, neuroprotection, and metabolic processes. Notably, we identified several potential novel targets associated with pain modulation, including Arl6ip1, Gsk3b, Scn7a, and Zbtb20 in PEP1, Rgs7bp in PEP2, and Bhlha9 in cLTMR. The established protein-protein interaction network identified some hub genes, implying their critical involvement in regulating orofacial inflammatory pain. Our study revealed the heterogeneity of TG neurons and their diverse neuronal transcriptomic responses to orofacial inflammation, providing a basis for the development of therapeutic strategies for orofacial inflammatory pain.

18.
J Tissue Eng ; 13: 20417314221084095, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35321254

RESUMO

Apical periodontitis (AP) causes arrest of tooth root development, which is associated with impaired odontoblastic differentiation of stem cells from apical papilla (SCAPs), but the underlying mechanism remains unclear. Here, we investigated roles of extracellular vesicle (EV) in AP and odontoblastic differentiation of SCAPs, moreover, a novel nuclear factor I/C (NFIC)-encapsulated EV was developed to promote dentin regeneration. We detected a higher expression of EV marker CD63 in inflamed apical papilla, and found that EVs from LPS-stimulated dental pulp cells suppressed odontoblastic differentiation of SCAPs through downregulating NFIC. Furthermore, we successfully constructed the NFIC-encapsulated EV by overexpressing NFIC in HEK293FT cells, which could upregulate cellular NFIC level in SCAPs, promoting the proliferation and migration of SCAPs, as well as dentinogenesis both in vitro and in vivo. Collectively, based on pathological roles of EV in AP, our study provides a novel strategy for dentin regeneration by exploiting EV to deliver NFIC.

19.
J Bone Miner Metab ; 40(1): 1-8, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34424416

RESUMO

Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) is an inducible co-regulator of nuclear receptors and is involved in a wide variety of biological responses. As the master regulators of mitochondrial biogenesis and function, PGC-1α and PGC-1ß have been reported to play key roles in bone metabolism. They can be rapidly induced under conditions of increased metabolic activities, such as osteoblastogenesis and osteoclastogenesis, to fulfill greater energy demand or facilitate other biochemical reactions. PGC-1α and PGC-1ß have both overlapping and distinct functions with each other among their target organs. In bone homeostasis, PGC-1α and PGC-1ß promote the expression of genes required for mitochondrial biogenesis via coactivator interactions with key transcription factors, respectively regulating osteoblastogenesis and osteoclastogenesis. Here, we review the current understanding of how PGC-1α and PGC-1ß affect osteoblastogenesis and osteoclastogenesis, how these two PGC-1 coactivators are regulated in bone homeostasis, and how we can translate these findings into therapeutic potential for bone metabolic diseases.


Assuntos
Homeostase
20.
Dev Growth Differ ; 63(7): 354-371, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34411285

RESUMO

As precursor cells of odontoblasts, dental papilla cells (DPCs) form the dentin-pulp complex during tooth development. Nitric oxide (NO) regulates the functions of multiple cells and organ tissues, including stem cell differentiation and bone formation. In this paper, we explored the involvement of NO in odontoblastic differentiation. We verified the expression of NO synthase (NOS) in rat odontoblasts by nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) staining and immunohistochemistry in vivo. The expression of all three NOS isoforms in rat DPCs was confirmed by quantitative reverse-transcription polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting in vitro. The expression of neuronal NOS and endothelial NOS was upregulated during the odontoblastic differentiation of DPCs. Inhibition of NOS function by NOS inhibitor l-NG -monomethyl arginine (L-NMMA) resulted in reduced formation of mineralized nodules and expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein (DMP1) during DPC differentiation. The NO donor S-nitroso-N-acetylpenicillamine (SNAP, 0.1, 1, 10, and 100 µM) promoted the viability of DPCs. Extracellular matrix mineralization and odontogenic markers expression were elevated by SNAP at low concentrations (0.1, 1, and 10 µM) and suppressed at high concentration (100 µM). Blocking the generation of cyclic guanosine monophosphate (cGMP) with 1H-(1,2,4)oxadiazolo-(4,3-a)quinoxalin-1-one (ODQ) abolished the positive influence of SNAP on the odontoblastic differentiation of DPCs. These findings demonstrate that NO regulates the odontoblastic differentiation of DPCs, thereby influencing dentin formation and tooth development.


Assuntos
Óxido Nítrico , Odontoblastos , Animais , Diferenciação Celular , Células Cultivadas , Papila Dentária , Polpa Dentária , Óxido Nítrico Sintase/genética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...