Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(10): 1627-1642, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735254

RESUMO

Parasitic plants have evolved to be subtly or severely dependent on host plants to complete their life cycle. To provide new insights into the biology of parasitic plants in general, we assembled genomes for members of the sandalwood order Santalales, including a stem hemiparasite (Scurrula) and two highly modified root holoparasites (Balanophora) that possess chimaeric host-parasite tubers. Comprehensive genome comparisons reveal that hemiparasitic Scurrula has experienced a relatively minor degree of gene loss compared with autotrophic plants, consistent with its moderate degree of parasitism. Nonetheless, patterns of gene loss appear to be substantially divergent across distantly related lineages of hemiparasites. In contrast, Balanophora has experienced substantial gene loss for the same sets of genes as an independently evolved holoparasite lineage, the endoparasitic Sapria (Malpighiales), and the two holoparasite lineages experienced convergent contraction of large gene families through loss of paralogues. This unprecedented convergence supports the idea that despite their extreme and strikingly divergent life histories and morphology, the evolution of these and other holoparasitic lineages can be shaped by highly predictable modes of genome reduction. We observe substantial evidence of relaxed selection in retained genes for both hemi- and holoparasitic species. Transcriptome data also document unusual and novel interactions between Balanophora and host plants at the host-parasite tuber interface tissues, with evidence of mRNA exchange, substantial and active hormone exchange and immune responses in parasite and host.


Assuntos
Interações Hospedeiro-Parasita , Plantas , Interações Hospedeiro-Parasita/genética , Plantas/genética
2.
Microb Pathog ; 174: 105927, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36529285

RESUMO

BACKGROUND: Massa Medicata Fermentata (MMF) is one of the most commonly used traditional fermented Chinese medicines. MMF is widely used for the treatment of digestive diseases such as dyspepsia and flatulence in traditional Chinese medicine (TCM). However, the therapeutic mechanism of MMF is not well understood. METHOD: In this study, SD rats received 0.1% iodoacetamide either alone or in combination with water platform sleep deprivation to induce functional dyspepsia and were administered MMF (1 or 3 g/kg/d, ig), mosapride citrate (Mosa., 2 mg/kg/d, ig) or saline for 21 days. After treatment, the sucrose preferences and gastric emptying rates of the rats were assessed; HE staining was used to detect the pathological changes in the rat duodenum; ELISA kits were used to detect motilin (MTL) in the rat duodenum and the serum contents of Interferon-λ (IFN-λ), Interleukin 6 (IL-6), and Tumor Necrosis Factor-α (TNF-α). An approach based on 16S rDNA amplicon sequencing was utilized to explore the intestinal microflora in the colon contents of rats and the metabolism of the microflora to assess the potential mechanisms of MMF in ameliorating functional dyspepsia (FD). In addition, gas chromatography-mass spectrometry (GC/MS) was used to detect changes in short fatty acids (SCFAs) in the colon contents of rats. RESULTS: MMF reduced the serum levels of TNF-α, and IFN-λ, improved the morphology of duodenal intestinal villi and ameliorated intestinal mucosal lamina propria injury in FD rats, and the sucrose preference increased and the gastric emptying rate decreased in FD rats. MMF alleviated intestinal microflora disturbance and exerted a regulatory effect on Bacteroidetes, Proteobacteria, and Firmicutes, reduced total SCAFs, Butyric Acid, Propionic acid-2-methyl, Butanoic Acid-3-methyl, and Hexanoic acid. CONCLUSIONS: These results showed that the effect of MMF on the intestinal flora and its metabolites may provide a new treatment strategy for FD.


Assuntos
Dispepsia , Microbioma Gastrointestinal , Ratos , Animais , Dispepsia/tratamento farmacológico , Dispepsia/microbiologia , Microbioma Gastrointestinal/genética , Fator de Necrose Tumoral alfa/metabolismo , Ratos Sprague-Dawley
3.
Alzheimers Dement ; 19(4): 1245-1259, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35993441

RESUMO

INTRODUCTION: The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are hexanucleotide repeats in chromosome 9 open reading frame 72 (C9orf72). These repeats produce dipeptide repeat proteins with poly(PR) being the most toxic one. METHODS: We performed a kinome-wide CRISPR/Cas9 knock-out screen in human induced pluripotent stem cell (iPSC) -derived cortical neurons to identify modifiers of poly(PR) toxicity, and validated the role of candidate modifiers using in vitro, in vivo, and ex-vivo studies. RESULTS: Knock-down of NIMA-related kinase 6 (NEK6) prevented neuronal toxicity caused by poly(PR). Knock-down of nek6 also ameliorated the poly(PR)-induced axonopathy in zebrafish and NEK6 was aberrantly expressed in C9orf72 patients. Suppression of NEK6 expression and NEK6 activity inhibition rescued axonal transport defects in cortical neurons from C9orf72 patient iPSCs, at least partially by reversing p53-related DNA damage. DISCUSSION: We identified NEK6, which regulates poly(PR)-mediated p53-related DNA damage, as a novel therapeutic target for C9orf72 FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Animais , Humanos , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína C9orf72/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sistemas CRISPR-Cas , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Expansão das Repetições de DNA/genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
4.
Plant Sci ; 325: 111489, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36216298

RESUMO

Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.


Assuntos
Citrus , Plantas Medicinais , Citrus/genética , Medicina Herbária , China , Plantas Medicinais/genética
5.
Front Oncol ; 12: 945102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033435

RESUMO

Despite improved methods of diagnosis and the development of different treatments, mortality from lung cancer remains surprisingly high. Non-small cell lung cancer (NSCLC) accounts for the large majority of lung cancer cases. Therefore, it is important to review current methods of diagnosis and treatments of NSCLC in the clinic and preclinic. In this review, we describe, as a guide for clinicians, current diagnostic methods and therapies (such as chemotherapy, chemoradiotherapy, targeted therapy, antiangiogenic therapy, immunotherapy, and combination therapy) for NSCLC.

6.
Nat Plants ; 8(4): 389-401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35437001

RESUMO

Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor expressed exclusively in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.


Assuntos
Cycas , Cycadopsida/genética , Cycas/genética , Genes de Plantas , Ginkgo biloba/genética , Filogenia , Sementes/genética
7.
Cancer Cell Int ; 21(1): 663, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895230

RESUMO

m6A (N6-methyladenosine) methylation, a well-known modification in tumour epigenetics, dynamically and reversibly fine tunes the entire process of RNA metabolism. Aberrant levels of m6A and its regulators, which can predict the survival and outcomes of cancer patients, are involved in tumorigenesis, metastasis and resistance. Ovarian cancer (OC) ranks first among gynaecological tumours in the causes of death. At first diagnosis, patients with OC are usually at advanced stages owing to a lack of early biomarkers and effective targets. After treatment, patients with OC often develop drug resistance. This article reviews the recent experimental advances in understanding the role of m6A modification in OC, raising the possibility to treat m6A modification and its regulators as promising diagnostic markers and therapeutic targets for OC.

8.
Genomics ; 113(6): 3696-3704, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34520805

RESUMO

Clausena lansium (Lour.) Skeels (Rutaceae), recognized as wampee, is a widely distributed fruit tree which is utilized as a folk-medicine for treatment of several common diseases. However, the genomic information about this medicinally important species is still lacking. Therefore, we assembled the first genome of Clausena genus with a total length of 310.51 Mb and scaffold N50 of 2.24 Mb by using 10× Genomics technology. Further annotation revealed a total of 34,419 protein-coding genes, while repetitive elements covered 39.08% (121.36 Mb) of the genome. The Clausena and Citrus genus were found to diverge around 22 MYA, and also shared an ancient whole-genome triplication event with Vitis. Furthermore, multi-tissue transcriptomic analysis enabled the identification of genes involved in the synthesis of carbazole alkaloids. Altogether, these findings provided new insights into the genome evolution of Wampee species and highlighted the possible role of key genes involved in the carbazole alkaloids biosynthetic pathway.


Assuntos
Alcaloides , Clausena , Carbazóis , Clausena/genética , Frutas , Estrutura Molecular
9.
Hortic Res ; 8(1): 141, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145222

RESUMO

Rosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.

10.
Mediators Inflamm ; 2021: 6611219, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34045925

RESUMO

Perilla frutescens (L.) Britton is a classic herbal plant used widely against asthma in China. But its mechanism of beneficial effect remains undermined. In the study, the antiallergic asthma effects of Perilla leaf extract (PLE) were investigated, and the underlying mechanism was also explored. Results showed that PLE treatment significantly attenuated airway inflammation in OVA-induced asthma mice, by ameliorating lung pathological changes, inhibiting recruitment of inflammatory cells in lung tissues and bronchoalveolar lavage fluid (BALF), decreasing the production of inflammatory cytokines in the BALF, and reducing the level of immunoglobulin in serum. PLE treatment suppressed inflammatory response in antigen-induced rat basophilic leukemia 2H3 (RBL-2H3) cells as well as in OVA-induced human peripheral blood mononuclear cells (PBMCs). Furthermore, PLE markedly inhibited the expression and phosphorylation of Syk, NF-κB, PKC, and cPLA2 both in vivo and in vitro. By cotreating with inhibitors (BAY61-3606, Rottlerin, BAY11-7082, and arachidonyl trifluoromethyl ketone) in vitro, results revealed that PLE's antiallergic inflammatory effects were associated with the inhibition of Syk and its downstream signals NF-κB, PKC, and cPLA2. Collectively, the present results suggested that PLE could attenuate allergic inflammation, and its mechanism might be partly mediated through inhibiting the Syk pathway.


Assuntos
Asma , Perilla , Animais , Asma/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Pulmão/metabolismo , Camundongos , NF-kappa B/metabolismo , Perilla/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Transdução de Sinais
11.
J Inflamm Res ; 13: 897-911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223845

RESUMO

BACKGROUND: Perilla frutescens (L.) Britt., a classic medicinal plant, has been demonstrated to have anti-inflammatory and anti-allergic effects in asthma. Perilla leaves extract (PLE) exerted significant therapeutic effect against allergic asthma inflammation through Syk inhibition. But the active chemical ingredients from PLE are complex and unclear, it is difficult to fully elucidate its pharmacological mechanisms. METHODS: A method was established for rapid screening and characterization of active ingredients from PLE that targeted Syk, with which three potential active ingredients were identified. By using OVA-induced allergic asthma mouse model in vivo, OVA-induced human PBMCs inflammation model and DNP-IgE/BSA-induced RBL-2H3 cells model in vitro, the effects and mechanisms of PLE and its active components were evaluated. RESULTS: Using Syk-affinity screening method, roseoside (RosS), vicenin-2 (Vic-2) and rosmarinic acid (RosA) were identified from PLE. In vitro, PLE and its ingredients showed significant inhibitory activities against Syk, with their mixture (Mix, prepared by RosS, Vic-2 and RosA in accordance with their ratio in Syk-conjugated beads bound fraction) showing a stronger inhibitory activity. RosS, Vic-2 and RosA also showed significant effects on allergic asthma, and a synergistic effect of Mix was observed. Moreover, treatment with PLE, RosS, Vic-2, RosA, and Mix significantly inhibited the expression and phosphorylation of Syk, PKC, NF-κB p65, and cPLA2 in allergic mice lung tissue and in RBL-2H3 cells. CONCLUSION: PLE may alleviate allergic airway inflammation partly through the multiple components synergistic targeting on Syk and its downstream inflammatory pathway.

12.
Medicine (Baltimore) ; 99(36): e22106, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899093

RESUMO

Osteonecrosis of the femoral head is a common orthopedic disease. Based on years of clinical experience and significant imaging data, this study aimed to elucidate a new type of it, to help improve prognosis in young adults and provide a basis for hip preservation treatment.From January 2014 to December 2016, a total of 211 patients undergoing hip preservation surgery for femoral head necrosis at our hospital were enrolled in this study. Coronal plane classification and cross-sectional area analysis were performed by nuclear magnetic resonance imaging (computed tomography optional) in cases meeting the inclusion criteria. Meanwhile, a new method of classification and calculating the necrotic area was proposed. The application simulation was conducted using sample cases. Additionally, treatment methods were recommended. We used our method to compare the outcome of the selected patients with the JIC classification so as to judge the advantages and disadvantages.The " pressure bone trabecular angle " of the femoral head was measured, and the "sclerotic band" (Zhang Ying) type of classification system and the "quartile" (Zhang Ying) method of measurement were used in 2 sample cases. After analysis, it is more accurate than JIC.The "Sclerotic band" type of classification system and 'quartile' methods are new methods to evaluate the stability of femoral head necrosis. They are convenient for clinical application and easily adopted.


Assuntos
Necrose da Cabeça do Fêmur/classificação , Necrose da Cabeça do Fêmur/patologia , Adulto , Osso Esponjoso/patologia , Feminino , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/diagnóstico por imagem , Necrose da Cabeça do Fêmur/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
13.
Hortic Res ; 7(1): 94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528706

RESUMO

Averrhoa carambola is commonly known as star fruit because of its peculiar shape, and its fruit is a rich source of minerals and vitamins. It is also used in traditional medicines in countries such as India, China, the Philippines, and Brazil for treating various ailments, including fever, diarrhea, vomiting, and skin disease. Here, we present the first draft genome of the Oxalidaceae family, with an assembled genome size of 470.51 Mb. In total, 24,726 protein-coding genes were identified, and 16,490 genes were annotated using various well-known databases. The phylogenomic analysis confirmed the evolutionary position of the Oxalidaceae family. Based on the gene functional annotations, we also identified enzymes that may be involved in important nutritional pathways in the star fruit genome. Overall, the data from this first sequenced genome in the Oxalidaceae family provide an essential resource for nutritional, medicinal, and cultivational studies of the economically important star-fruit plant.

14.
GigaByte ; 2020: gigabyte4, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36824597

RESUMO

Nyssa yunnanensis is a deciduous tree species in the family Nyssaceae within the order Cornales. As only eight individual trees and two populations have been recorded in China's Yunnan province, this species has been listed among China's national Class I protection species since 1999 and also among 120 PSESP (Plant Species with Extremely Small Populations) in the Implementation Plan of Rescuing and Conserving China's Plant Species with Extremely Small Populations (PSESP) (2011-2-15). Here, we present the draft genome assembly of N. yunnanensis. Using 10X Genomics linked-reads sequencing data, we carried out the de novo assembly and annotation analysis. The N. yunnanensis genome assembly is 1475 Mb in length, containing 288,519 scaffolds with a scaffold N50 length of 985.59 kb. Within the assembled genome, 799.51 Mb was identified as repetitive elements, accounting for 54.24% of the sequenced genome, and a total of 39,803 protein-coding genes were predicted. With the genomic characteristics of N. yunnanensis available, our study might facilitate future conservation biology studies to help protect this extremely threatened tree species.

15.
J Cell Mol Med ; 24(2): 1958-1968, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31876072

RESUMO

The low-grade, chronic inflammation initiated by TLR4-triggered innate immune responses has a central role on early osteoarthritis. Amurensin H is a resveratrol dimer with anti-inflammatory and anti-apoptotic effects, while its effects on TLR-4 signals to inhibit osteoarthritis are still unclear. In the present study, treatment with amurensin H for 2 weeks in monosodium iodoacetate-induced mice significantly slows down cartilage degeneration and inflammation using macroscopic evaluation, haematoxylin and eosin (HE) staining and micro-magnetic resonance imaging. In IL-1ß-stimulated rat chondrocytes, amurensin H suppresses the production of inflammatory mediators including nitric oxide, IL-6, IL-17, PGE2 and TNF-α using Greiss and ELISA assay. Amurensin H inhibits matrix degradation via decreasing levels of MMP-9 and MMP-13 using Western blot assay, promotes synthesis of type II collagen and glycosaminoglycan using immunostaining and safranin O staining, respectively. Amurensin H inhibits intracellular and mitochondrial reactive oxygen species (ROS) generation, and mitochondrial membrane depolarization using DCFH-DA, MitoSOX Red and JC-1 assay as well. IL-1ß stimulates TLR4 activation and Syk phosphorylation in chondrocytes, while amurensin H inhibits TLR4/Syk signals and downstream p65 phosphorylation and translocation in a time and dose-dependent manner. Together, these results suggest that amurensin H exerts chondroprotective effects by attenuating oxidative stress, inflammation and matrix degradation via the TLR4/Syk/NF-κB pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Condrócitos/metabolismo , Condrócitos/patologia , NF-kappa B/metabolismo , Substâncias Protetoras/farmacologia , Estilbenos/farmacologia , Quinase Syk/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Benzofuranos/química , Condrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Iodoacetatos , Camundongos , Modelos Biológicos , Osteoartrite/induzido quimicamente , Osteoartrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Fator de Transcrição RelA/metabolismo
16.
Front Pharmacol ; 10: 1157, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636566

RESUMO

Amurensin H, a resveratrol dimer derived from Vitis amurensis Rupr, has several biological effects, including anti-inflammatory and antioxidant activities. Studies have found that amurensin H attenuated asthma-like allergic airway inflammation. However, its protective activity on chronic obstructive pulmonary disease (COPD) airway inflammation is not fully explored. The present study used a lipopolysaccharide (LPS)/cigarette smoke-induced mice model and an LPS-stimulated THP-1-derived macrophages model to measure the lung tissue's morphology changes. The results showed that amurensin H ameliorated the histological inflammatory alterations in the lung tissues, leading to a decrease in the expression of interleukin 6 (IL-6), IL-17A, tumor necrosis factor α (TNF-α), and interferon γ in bronchoalveolar lavage fluid. Amurensin H also significantly inhibited the release of IL-1ß, IL-6, IL-8, and TNF-α in LPS-stimulated THP-1-derived macrophages. Furthermore, amurensin H markedly inhibited the expressions of p-Syk, nuclear factor κB (NF-κB), and p-NF-κB both in vivo and in vitro. Results from cotreatment with Syk inhibitor BAY61-3606 and NF-κB inhibitor BAY11-7082 in vitro revealed that amurensin H's protective effect against airway inflammation could be due partly to the inhibition of the Syk/NF-κB pathway. These findings suggest that amurensin H shows therapeutic effects on COPD airway inflammation, and inhibiting the Syk/NF-κB pathway might be part of its underlying mechanisms.

17.
J Hepatol ; 70(3): 470-482, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30529386

RESUMO

BACKGROUND & AIMS: The variety of alterations found in hepatocellular carcinoma (HCC) makes the identification of functionally relevant genes and their combinatorial actions in tumorigenesis challenging. Deregulation of receptor tyrosine kinases (RTKs) is frequent in HCC, yet little is known about the molecular events that cooperate with RTKs and whether these cooperative events play an active role at the root of liver tumorigenesis. METHODS: A forward genetic screen was performed using Sleeping Beauty transposon insertional mutagenesis to accelerate liver tumour formation in a genetic context in which subtly increased MET RTK levels predispose mice to tumorigenesis. Systematic sequencing of tumours identified common transposon insertion sites, thus uncovering putative RTK cooperators for liver cancer. Bioinformatic analyses were applied to transposon outcomes and human HCC datasets. In vitro and in vivo (through xenografts) functional screens were performed to assess the relevance of distinct cooperative modes to the tumorigenic properties conferred by RTKs. RESULTS: We identified 275 genes, most of which are altered in patients with HCC. Unexpectedly, these genes are not restricted to a small set of pathway/cellular processes, but cover a large spectrum of cellular functions, including signalling, metabolism, chromatin remodelling, mRNA degradation, proteasome, ubiquitination, cell cycle regulation, and chromatid segregation. We validated 15 tumour suppressor candidates, as shRNA-mediated targeting confers tumorigenicity to RTK-sensitized cells, but not to cells with basal RTK levels. This demonstrates that the context of enhanced RTK levels is essential for their action in tumour initiation. CONCLUSION: Our study identifies unanticipated genetic interactions underlying gene cooperativity with RTKs in HCC. Moreover, these results show how subtly increased levels of wild-type RTKs provide a tumour permissive cellular environment allowing a large spectrum of deregulated mechanisms to initiate liver cancer. LAY SUMMARY: Receptor tyrosine kinases (RTKs) are among signals frequently deregulated in patients with hepatocellular carcinoma and their deregulation confers essential biological properties to cancer cells. We have applied a genetic method to randomly mutate large numbers of genes in the context of a mouse model with increased RTK levels, predisposed to develop liver cancer. We identified mechanisms that accelerate tumour formation in cooperation with enhanced RTK levels. The wide array of cellular functions among these cooperators illustrates an extraordinary capability of RTKs to render the liver more vulnerable to additional alterations, by priming cells for tumour initiation.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular , Neoplasias Hepáticas , Fígado/patologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Mutagênese Insercional , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais
18.
Artigo em Inglês | MEDLINE | ID: mdl-32030094

RESUMO

BACKGROUND: Henoch-Schönlein purpura nephritis (HSPN) is the principal cause of morbidity and mortality in Henoch-Schönlein purpura (HSP). However, there is no absolute consensus for the best management of severe HSPN till now. Qingzixiaoban Granule (QZXB GR), a traditional Chinese medicine formula, has been applied to treat HSP in clinical in China. However, the therapeutic effects and potential mechanism of QZXB GR on HSPN is still unknown. METHODS: A Gliadin plus Indian Ink-induced HSPN mice model was established. Renal histopathologic changes and the subcutaneous hemorrhage on left legs were assessed. Hematuria and proteinuria were determined using hemocytometer and bicinchoninic acid assay, respectively. The serum circular immune complex and interleukin-6 were quantified by ELISA. Using blood biochemical analyzer, the renal biochemical parameters, including serum total protein, albumin, creatinine, and blood urea nitrogen, were measured. The deposition of immune complex in renal tissues and the lymphocyte subsets in peripheral blood and spleen was investigated by immunohistochemistry and flow cytometry. RESULTS: QZXB GR treatment significantly ameliorated renal injury in HSPN mice, by attenuating renal histopathological changes, reducing subcutaneous hemorrhage, decreasing proteinuria/hematuria, regulating renal biochemical parameters, and inhibiting the release of serum interleukin-6. Furthermore, QZXB GR treatment significantly decreased the level of serum circular immune complex, decreased immune complex IgA and IgG deposition in renal tissue, and suppressed Th2 immunodeviation. CONCLUSION: QZXB GR could prevent renal injury in HSPN mice, and its renoprotective mechanism might be exerted partly through suppressing immune complexes deposition and Th2 immune deviation.

19.
Methods Mol Biol ; 1819: 215-233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30421406

RESUMO

To gain functional insights into microRNAs (miRNAs), researchers usually look for pathways or biological processes that are overrepresented in their target genes. The interpretation is often complicated by the fact that a single miRNA can target many genes and multiple miRNAs can regulate a single gene. Here we introduce miRNet ( www.mirnet.ca ), an easy-to-use web-based tool designed for creation, customization, visual exploration and functional interpretation of miRNA-target interaction networks. By integrating multiple high-quality miRNA-target data sources and advanced statistical methods into a powerful network visualization system, miRNet allows researchers to easily navigate the complex landscape of miRNA-target interactions to obtain deep biological insights. This tutorial provides a step-by-step protocol on how to use miRNet to create miRNA-target networks for visual exploration and functional analysis from different types of data inputs.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/biossíntese , Modelos Genéticos , Software , Animais , Humanos , MicroRNAs/genética
20.
PeerJ ; 6: e5650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280028

RESUMO

Xeno-miRNAs are microRNAs originating from exogenous species detected in host biofluids. A growing number of studies have suggested that many of these xeno-miRNAs may be involved in cross-species interactions and manipulations. To date, hundreds of xeno-miRNAs have been reported in different hosts at various abundance levels. Based on computational predictions, many more miRNAs could be potentially transferred to human circulation system. There is a clear need for bioinformatics resources and tools dedicated to xeno-miRNA annotations and their potential functions. To address this need, we have systematically curated xeno-miRNAs from multiple sources, performed target predictions using well-established algorithms, and developed a user-friendly web-based tool-Xeno-miRNet-to allow researchers to search and explore xeno-miRNAs and their potential targets within different host species. Xeno-miRNet currently contains 1,702 (including both detected and predicted) xeno-miRNAs from 54 species and 98,053 potential gene targets in six hosts. The web application is freely available at http://xeno.mirnet.ca.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...