Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167016, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37714338

RESUMO

Moderate altitude exposure has shown beneficial effects on diabetes incidence but the underlying mechanisms are not understood. Our study aimed to investigate how the human gut microbiome impacted the serum metabolome and associated with glucose homeostasis in healthy Chinese individuals upon moderate-altitude exposure. Faecal microbiome composition was assessed using shotgun metagenomic sequencing. Serum metabolome was acquired by untargeted metabolomics technology, and amino acids (AAs) and propionic acid in serum were quantified by targeted metabolomics technology. The results indicated that the moderate-altitude exposed individuals presented lowered fasting blood glucose (FBG) and propionic acid, increased circulating L-Glutamine but decreased L-Glutamate and L-Valine, which correlated with enriched Bacteroidetes and decreased Proteobacteria. Additionally, the silico causality associations among gut microbiota, serum metabolome and host FBG were analyzed by mediation analysis. It showed that increased Bacteroides ovatus (B. ovatus) and decreased Escherichia coli (E. coli) were identified as the main antagonistic species driving the association between L-Glutamate and FBG in silico causality. Furthermore, the high-fat diet (HFD) fed mice subjected to faecal microbiota transplantation (FMT) were applied to validate the cause-in-fact effects of gut microbiota on the beneficial glucose response. We found that microbiome in the moderate-altitude exposed donor could predict the extent of the FBG response in recipient mice, which showed lowered FBG, L-Glutamate and Firmicutes/Bacteroidetes ratio. Our findings suggest that moderate-altitude exposure targeting gut microbiota and circulating metabolome, may pave novel avenues to counter dysglycemia.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Glicemia , Propionatos , Ácido Glutâmico , Altitude , Escherichia coli , Metaboloma , Glucose , Jejum
2.
Food Res Int ; 162(Pt B): 112176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461373

RESUMO

Metabolic syndrome (MS) is a common metabolic disorder characterized by obesity, insulin resistance, cardiovascular disease and gut microbiota dysbiosis. Pu-erh tea and its ingredient theabrownin have known functions on the reduction of body weight gain and fat accumulation. However, few studies systematicly analyze the different contributions and mechanisms of their anti-metabolic syndrome functions through multi-omics combination analysis. Here, we used metagenomics, transcriptomics and metabolomics technology to investigate the anti-metabolic syndrome mechanism of Pu-erh tea and theabrownin in MS mice. Our results suggested that Pu-erh tea and theabrownin interventions could improve the physiological functions of liver, jejunum and adipose tissues in MS mice. Hepatic transcriptome revealed that both interventions could regulate the circadian rhythm pathway. Glycerophospholipid and linoleic acid metabolism were also modulated by both interventions through serum and brain metabolome analysis. Faecal metagenome demonstrated that both interventions could increase the relative abundance of Clostridiales bacterium 42_27, Blautia coccoides and Firmicutes bacterium ASF500, but decrease the relative abundance of Brevundimonas vesicularis. Otherwise, compared with Pu-erh tea, theabrownin markedly upregulated the levels of hepatic antioxidants (i.e., SOD, GSH), prominently downregulated hepatic inflammatory factors (i.e., IL-1, IL-6, TNF-α) and malondialdehyde oxidant, but modestly reduced obesity-associated short-chain fatty acids in faeces in MS mice. Taken together, our data provided insights into the homogeneous and heterogeneous natural biological functions of theabrownin and Pu-erh tea in the treatment of metabolic syndrome.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Camundongos , Fígado , Encéfalo , Obesidade , Chá
3.
Front Cell Infect Microbiol ; 12: 1011254, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389138

RESUMO

Children are at high risk for influenza A virus (IAV) infections, which can develop into severe illnesses. However, little is known about interactions between the microbiome and respiratory tract metabolites and their impact on the development of IAV pneumonia in children. Using a combination of liquid chromatography tandem mass spectrometry (LC-MS/MS) and 16S rRNA gene sequencing, we analyzed the composition and metabolic profile of the oropharyngeal microbiota in 49 pediatric patients with IAV pneumonia and 42 age-matched healthy children. The results indicate that compared to healthy children, children with IAV pneumonia exhibited significant changes in the oropharyngeal macrobiotic structure (p = 0.001), and significantly lower microbial abundance and diversity (p < 0.05). These changes came with significant disturbances in the levels of oropharyngeal metabolites. Intergroup differences were observed in 204 metabolites mapped to 36 metabolic pathways. Significantly higher levels of sphingolipid (sphinganine and phytosphingosine) and propanoate (propionic acid and succinic acid) metabolism were observed in patients with IAV pneumonia than in healthy controls. Using Spearman's rank-correlation analysis, correlations between IAV pneumonia-associated discriminatory microbial genera and metabolites were evaluated. The results indicate significant correlations and consistency in variation trends between Streptococcus and three sphingolipid metabolites (phytosphingosine, sphinganine, and sphingosine). Besides these three sphingolipid metabolites, the sphinganine-to-sphingosine ratio and the joint analysis of the three metabolites indicated remarkable diagnostic efficacy in children with IAV pneumonia. This study confirmed significant changes in the characteristics and metabolic profile of the oropharyngeal microbiome in pediatric patients with IAV pneumonia, with high synergy between the two factors. Oropharyngeal sphingolipid metabolites may serve as potential diagnostic biomarkers of IAV pneumonia in children.


Assuntos
Vírus da Influenza A , Influenza Humana , Microbiota , Pneumonia , Humanos , Criança , Esfingosina , Vírus da Influenza A/genética , RNA Ribossômico 16S/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , Microbiota/genética , Metaboloma , Esfingolipídeos
4.
Nat Commun ; 13(1): 3175, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676264

RESUMO

In-depth profiling of genetic variations in the gut microbiome is highly desired for understanding its functionality and impacts on host health and disease. Here, by harnessing the long read advantage provided by Oxford Nanopore Technology (ONT), we characterize fine-scale genetic variations of structural variations (SVs) in hundreds of gut microbiomes from healthy humans. ONT long reads dramatically improve the quality of metagenomic assemblies, enable reliable detection of a large, expanded set of structural variation types (notably including large insertions and inversions). We find SVs are highly distinct between individuals and stable within an individual, representing gut microbiome fingerprints that shape strain-level differentiations in function within species, complicating the associations to metabolites and host phenotypes such as blood glucose. In summary, our study strongly emphasizes that incorporating ONT reads into metagenomic analyses expands the detection scope of genetic variations, enables profiling strain-level variations in gut microbiome, and their intricate correlations with metabolome.


Assuntos
Microbioma Gastrointestinal , Nanoporos , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Metaboloma/genética , Metagenoma , Metagenômica
5.
Front Pharmacol ; 12: 632602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967768

RESUMO

Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) with a complex aetiology that commonly recurs. Most drugs for UC treatment interfere with metabolism and immune responses, often causing some serious adverse reactions. Therefore, the development of alternative treatments, including nutritional supplements and probiotics, have been one of the main areas of current research due to fewer side effect. As both a Chinese medicine and a food, edible bird's nest (EBN) has high nutritional value. Modern pharmacological studies have shown that it has anti-inflammatory, immunoregulatory, antiviral and neuroprotective effects. In this study, UC was induced with dextran sulfate sodium (DSS) to investigate the protective effect of EBN on colitis mice and the related mechanism. The body weight, faecal morphology and faecal occult blood results of mice were recorded every day from the beginning of the modelling period. After the end of the experiment, the length of the colon was measured, and the colon was collected for histopathological detection, inflammatory factor detection and immunohistochemical detection. Mouse spleens were dissected for flow cytometry. The results showed that in mice with colitis, EBN improved symptoms of colitis, reduced colonic injury, and inhibited the increases in the levels of the pro-inflammatory cytokines IL-1ß and TNF-α. The T helper 17 (Th17)/regulatory T (Treg) cell balance was restored by decreasing the expression of IL-17A and IL-6 in intestinal tissues, increasing the expression of TGF-ß, and decreasing the number of Th17 cells in each EBN dose group. These findings suggest that EBN has a protective effect on DSS-mediated colitis in mice, mainly by restoring the Th17/Treg cell balance.

6.
Gigascience ; 6(7): 1-12, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28505362

RESUMO

The relationship between dyslipidemia and type 2 diabetes mellitus (T2D) has been extensively reported, but the global lipid profiles, especially in the East Asia population, associated with the development of T2D remain to be characterized. Liquid chromatography coupled to tandem mass spectrometry was applied to detect the global lipidome in the fasting plasma of 293 Chinese individuals, including 114 T2D patients, 81 prediabetic subjects, and 98 individuals with normal glucose tolerance (NGT). Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features with T2D patients exhibiting characteristics close to those of prediabetic individuals, whereas they differed significantly from individuals with NGT. We constructed and validated a random forest classifier with 28 lipidomic features that effectively discriminated T2D from NGT or prediabetes. Most of the selected features significantly correlated with diabetic clinical indices. Hydroxybutyrylcarnitine was positively correlated with fasting plasma glucose, 2-hour postprandial glucose, glycated hemoglobin, and insulin resistance index (HOMA-IR). Lysophosphatidylcholines such as lysophosphatidylcholine (18:0), lysophosphatidylcholine (18:1), and lysophosphatidylcholine (18:2) were all negatively correlated with HOMA-IR. The altered plasma lipidome in Chinese T2D and prediabetic subjects suggests that lipid features may play a role in the pathogenesis of T2D and that such features may provide a basis for evaluating risk and monitoring disease development.


Assuntos
Diabetes Mellitus Tipo 2/sangue , Lipídeos/sangue , Idoso , Glicemia/metabolismo , China , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Science ; 355(6329)2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28280153

RESUMO

Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.


Assuntos
Cromossomos Artificiais de Levedura/fisiologia , Genoma Fúngico , Saccharomyces cerevisiae/genética , Segregação de Cromossomos , Cromossomos Artificiais de Levedura/química , Cromossomos Artificiais de Levedura/genética , Meios de Cultura/química , Replicação do DNA , Glicerol , Proteômica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA , Biologia Sintética , Transcriptoma
8.
Sci Rep ; 6: 22525, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26932197

RESUMO

Coronary heart disease (CHD) is top risk factor for health in modern society, causing high mortality rate each year. However, there is no reliable way for early diagnosis and prevention of CHD so far. So study the mechanism of CHD and development of novel biomarkers is urgently needed. In this study, metabolomics and metagenomics technology are applied to discover new biomarkers from plasma and urine of 59 CHD patients and 43 healthy controls and trace their origin. We identify GlcNAc-6-P which has good diagnostic capability and can be used as potential biomarkers for CHD, together with mannitol and 15 plasma cholines. These identified metabolites show significant correlations with clinical biochemical indexes. Meanwhile, GlcNAc-6-P and mannitol are potential metabolites originated from intestinal microbiota. Association analysis on species and function levels between intestinal microbes and metabolites suggest a close correlation between Clostridium sp. HGF2 and GlcNAc-6-P, Clostridium sp. HGF2, Streptococcus sp. M143, Streptococcus sp. M334 and mannitol. These suggest the metabolic abnormality is significant and gut microbiota dysbiosis happens in CHD patients.


Assuntos
Doença das Coronárias/microbiologia , Metabolômica , Metagenômica , Estudos de Casos e Controles , Doença das Coronárias/sangue , Doença das Coronárias/urina , Humanos , Intestinos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...