Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607130

RESUMO

The achievement of the low Gilbert damping parameter in spin dynamic modulation is attractive for spintronic devices with low energy consumption and high speed. Metallic ferromagnetic alloy Co-Fe-B is a possible candidate due to its high compatibility with spintronic technologies. Here, we report thickness-dependent damping and soft magnetism in Co-Fe-B films sandwiched between two non-magnetic layers with Co-Fe-B films up to 50 nm thick. A non-monotonic variation of Co-Fe-B film damping with thickness is observed, which is in contrast to previously reported monotonic trends. The minimum damping and the corresponding Co-Fe-B thickness vary significantly among the different non-magnetic layer series, indicating that the structure selection significantly alters the relative contributions of various damping mechanisms. Thus, we developed a quantitative method to distinguish intrinsic from extrinsic damping via ferromagnetic resonance measurements of thickness-dependent damping rather than the traditional numerical calculation method. By separating extrinsic and intrinsic damping, each mechanism affecting the total damping of Co-Fe-B films in sandwich structures is analyzed in detail. Our findings have revealed that the thickness-dependent damping measurement is an effective tool for quantitatively investigating different damping mechanisms. This investigation provides an understanding of underlying mechanisms and opens up avenues for achieving low damping in Co-Fe-B alloy film, which is beneficial for the applications in spintronic devices design and optimization.

2.
Bioresour Technol ; 306: 123096, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32172087

RESUMO

Poplar hydrochar (RHC) was activated by thermal oxidation (TA-O) in air at 300 °C (O300) and in air + N2 (0.5% O2) at 500 and 700 °C (O500 and O700), respectively, and in N2 at 300-700 °C (N300-N700) as control. Samples characterized by various methods were used to analyze their effect on tetracycline adsorption. The results showed that TA-O greatly increased adsorption capacity qe, 100 (mg·g-1, C0 = 100 mg·L-1) from 6.29 for RHC to 33.32, 96.23 and 60.90 for O300, O500 and O700, respectively. The O300 increased carboxyl and aromaticity whereas little influenced on porosity. The O500, with the highest SBET and Smicro, enhanced adsorption probably by micropore filling and π-π interactions. The O700 fused micropore into mesopore but decreased the SBET, Smicro and qe, 100. Thus, thermal oxidation at 500 °C and 0.5% O2 is recommended for hydrochar activation to absorb tetracycline.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...