Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790725

RESUMO

Floccularia luteovirens, an endemic resource of the Tibetan Plateau, possesses significant medicinal and ecological values. However, the understanding of antioxidant capacity and metabolic profiling of F. luteovirens from diverse regions remains elusive due to limited resources. Therefore, to comprehensively comprehend the antioxidant capacity and metabolite diversity of F. luteovirens, we conducted a rounded analysis of its antioxidant capacity from three distinct regions using both untargeted and targeted metabolomics. Determination of antioxidant indices, such as ferric ion-reducing antioxidant power (FRAP), total phenolic content (TPC), and flavonoid content (FC), revealed the robust antioxidant capacity of F. luteovirens. QL F. luteovirens (QLFL) exhibited no significant difference compared to ZD F. luteovirens (ZDFL); however, both were significantly distinct from XH F. luteovirens (XHFL) across multiple indices. Furthermore, a positive correlation was observed between FRAP and flavonoid content. A total of 5782 metabolites were identified and chemically classified. Metabolites of F. luteovirens varied significantly at different regions and eight key differential metabolites were screened. Phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, and cyanoamino acid metabolism were the main different regulatory pathways. Consequently, the disparities in the antioxidant activity of F. luteovirens may primarily be ascribed to the biosynthesis and metabolism of phenylalanine, while vanillic acid could potentially serve as a pivotal metabolite influencing the antioxidative capacity of F. luteovirens by targeted metabolomics. These findings enhance our understanding of the composition of F. luteovirens and provide valuable resources for its comprehensive utilization and targeted development.

2.
Molecules ; 28(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38067475

RESUMO

Cordyceps represent a valuable class of medicinal fungi with potential utilization. The overexploitation and resource scarcity of Cordyceps sinensis (CS) have led to the emergence of Cordyceps such as Cordyceps militaris (CM) and Cordyceps cicadae (CC) as substitutes. The medicinal value of CS is often considered superior to other Cordyceps, potentially owing to differences in active ingredients. This study aimed to evaluate the differences in the composition and abundance of the primary and secondary metabolites of CS and its substitutes by untargeted metabolomics. A total of 4671 metabolites from 18 superclasses were detected. CS and its substitutes were rich in amino acids, lipids, organic acids, and their derivatives. We statistically analyzed the metabolites and found a total of 285 differential metabolites (3'-Adenylic acid, O-Adipoylcarnitine, L-Dopachrome, etc.) between CS and CC, CS and CM, and CM and CC, which are potential biomarkers. L-glutamate and glycerophospholipids were differential metabolites. A KEGG enrichment analysis indicated that the tyrosine metabolic pathway and tryptophan metabolism pathway are the most differentially expressed pathways among the three Cordyceps. In contrast, CS was enriched in a higher abundance of most lipid metabolites when compared to CM and CC, which may be an indispensable foundation for the pharmacological functions of CS. In conclusion, systematic, untargeted metabolomics analyses for CS and other Cordyceps have delivered a precious resource for insights into metabolite landscapes and predicted potential components of disease therapeutics.


Assuntos
Cordyceps , Cordyceps/química , Cromatografia Líquida de Alta Pressão , Metabolômica
3.
Front Microbiol ; 14: 1134585, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608949

RESUMO

Elymus nutans is a perennial grass of the Gramineae family. Due to its cold-resistance and nutrition deficiency tolerance, it has been applied to the ecological restoration of degraded alpine grassland on the Qinghai-Tibet Plateau. As an important symbiotic microorganism, arbuscular mycorrhizal fungi (AMF) have been proven to have great potential in promoting the growth and stress resistance of Gramineae grasses. However, the response mechanism of the AMF needs to be clarified. Therefore, in this study, Rhizophagus irregularis was used to explore the mechanism regulating cold resistance of E. nutans. Based on pot experiments and metabolomics, the effects of R. irregularis were investigated on the activities of antioxidant enzyme and metabolites in the roots of E. nutans under cold stress (15/10°C, 16/8 h, day/night). The results showed that lipids and lipid molecules are the highest proportion of metabolites, accounting for 14.26% of the total metabolites. The inoculation with R. irregularis had no significant effects on the activities of antioxidant enzyme in the roots of E. nutans at room temperature. However, it can significantly change the levels of some lipids and other metabolites in the roots. Under cold stress, the antioxidant enzyme activities and the levels of some metabolites in the roots of E. nutans were significantly changed. Meanwhile, most of these metabolites were enriched in the pathways related to plant metabolism. According to the correlation analysis, the activities of antioxidant enzyme were closely related to the levels of some metabolites, such as flavonoids and lipids. In conclusion, AMF may regulate the cold-resistance of Gramineae grasses by affecting plant metabolism, antioxidant enzyme activities and antioxidant-related metabolites like flavonoids and lipids. These results can provide some basis for studying the molecular mechanism of AMF regulating stress resistance of Gramineae grasses.

4.
Neurochem Int ; 147: 104977, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33524472

RESUMO

Multiple evidence has shown that long non-coding RNAs (lncRNAs) are novel modulators in the development of many neurological diseases, including spinal cord injury (SCI). Recently, a novel lncRNA zinc finger antisense 1 (ZFAS1) has been found to facilitate the development of many human diseases. However, the effect of ZFAS1 in SCI has not been explored. In the present study, we used the SCI mouse models and LPS-treated BV-2 cellular models to explore the role of ZFAS1 in SCI. Basso Mouse Scale score was applied to reveal locomotor function. Cresyl violet staining was used to reveal volume of spared myelin around the lesion in the injured cord. RIP and luciferase reporter assay were applied to detect binding capacity among RNAs. Next, ZFAS1 was identified to be upregulated in spinal cord tissues of SCI mice. ZFAS1 knockdown promoted functional recovery and inhibited cell apoptosis and the inflammatory response in SCI mice. ZFAS1 bound with microRNA 1953 (miR-1953), and miR-1953 was downregulated in spinal cord tissues of SCI mice. Furthermore, we confirmed that ZFAS1 promoted SCI progression via binding with miR-1953. In addition, phosphatase and tensin homolog (PTEN) was verified to be a downstream target for miR-1953 in vitro, and PTEN was upregulated in spinal cord tissues of SCI mice. Finally, we illustrated that ZFAS1 inactivated the PI3K/AKT pathway through upregulation of PTEN. In conclusion, our study revealed that ZFAS1 facilitated SCI by binding with miR-1953 and regulating the PTEN/PI3K/AKT pathway, which may provide a potential novel insight for treatment of SCI.


Assuntos
MicroRNAs/genética , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Proliferação de Células/genética , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...