Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 38(10): 3244-3256, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35225625

RESUMO

The construction of interfacial effects and chemical bonds between catalysts is one of the effective strategies to facilitate photogenerated electron transfer. A novel hollow cubic CoS is derived from Co-ZIF-9 and the S-C bond is successfully constructed between CoS and g-C3N4. The S-C bond acts as a bridge for electronic transmission, allowing the rapid transmission of photoelectron to hydrogen evolution active site in CoS. In addition, the results of electrochemical impedance spectroscopy and time-resolved photoluminescence spectroscopy show that the S-C bond acts as a bridge to quickly transfer photogenerated carriers in the composite material, and achieves the effect of high-efficiency hydrogen evolution. The hydrogen production of SgZ-45 reaches 9545 µmol·g-1 in 5 h, which is 53 and 12 times that of g-C3N4 and ZIF-9, respectively. The intrinsic mechanism of photoelectron transfer through S-C bonds can be further confirmed by density functional theory (DFT) calculations. This work provides new insights for building a chemical bond electron transfer bridge between MOF derivatives and nonmetallic photocatalytic materials.

2.
ACS Appl Mater Interfaces ; 13(5): 5907-5918, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33506676

RESUMO

Critical limb ischemia (CLI) is a severe form of peripheral artery disease (PAD). It is featured by degenerated skeletal muscle and poor vascularization. During the development of CLI, the upregulated matrix metalloproteinase-2 (MMP-2) degrades muscle extracellular matrix to initiate the degeneration. Meanwhile, MMP-2 is necessary for blood vessel formation. It is thus hypothesized that appropriate MMP-2 bioactivity in ischemic limbs will not only attenuate muscle degeneration but also promote blood vessel formation. Herein, we developed ischemia-targeting poly(N-isopropylacrylamide)-based nanogels to specifically deliver an MMP-2 inhibitor CTTHWGFTLC (CTT) into ischemic limbs to tailor MMP-2 bioactivity. Besides acting as an MMP-2 inhibitor, CTT promoted endothelial cell migration under conditions mimicking the ischemic limbs. The nanogels were sensitive to the pH of ischemic tissues, allowing them to largely aggregate in the injured area. To help reduce nanogel uptake by macrophages and increase circulation time, the nanogels were cloaked with a platelet membrane. An ischemia-targeting peptide CSTSMLKA (CST) was further conjugated on the platelet membrane for targeted delivery of nanogels into the ischemic area. CTT gradually released from the nanogels for 4 weeks. The nanogels mostly accumulated in the ischemic area for 28 days. The released CTT preserved collagen in the muscle and promoted its regeneration. In addition, CTT stimulated angiogenesis. Four weeks after CLI, the blood flow and vessel density of the ischemic limbs treated with the nanogels were remarkably higher than the control groups without CTT release. These results demonstrate that the developed nanogel-based CTT release system has the potential to stimulate ischemic limb regeneration.


Assuntos
Isquemia/tratamento farmacológico , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Músculo Esquelético/efeitos dos fármacos , Nanogéis/química , Neovascularização Patológica/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Isquemia/patologia , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/química , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Músculo Esquelético/patologia , Neovascularização Patológica/patologia , Tamanho da Partícula , Propriedades de Superfície
3.
Acta Biomater ; 105: 56-67, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954189

RESUMO

Cell therapy is a promising approach for ischemic tissue regeneration. However, high death rate of delivered cells under low oxygen condition, and poor cell retention in tissues largely limit the therapeutic efficacy. Using cell carriers with high oxygen preservation has potential to improve cell survival. To increase cell retention, cell carriers that can quickly solidify at 37 °C so as to efficiently immobilize the carriers and cells in the tissues are necessary. Yet there lacks cell carriers with these combined properties. In this work, we have developed a family of high oxygen preservation and fast gelation hydrogels based on N-isopropylacrylamide (NIPAAm) copolymers. The hydrogels were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAAm, acrylate-oligolactide (AOLA), 2-hydroxyethyl methacrylate (HEMA), and methacrylate-poly(ethylene glycol)-perfluorooctane (MAPEGPFC). The hydrogel solutions exhibited sol-gel temperatures around room temperature and were flowable and injectable at 4°C. They can quickly solidify (≤6 s) at 37°C to form flexible gels. These hydrogels lost 9.4~29.4% of their mass after incubation in Dulbecco's Phosphate-Buffered Saline (DPBS) for 4 weeks. The hydrogels exhibited a greater oxygen partial pressure than DPBS after being transferred from a 21% O2 condition to a 1% O2 condition. When bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels and cultured under 1% O2, the cells survived and proliferated during the 14-day culture period. In contrast, the cells experienced extensive death in the control hydrogel that had low oxygen preservation capability. The hydrogels possessed excellent biocompatibility. The final degradation products did not provoke cell death even when the concentration was as high as 15 mg/ml, and the hydrogel implantation did not induce substantial inflammation. These hydrogels are promising as cell carriers for cell transplantation into ischemic tissues. STATEMENT OF SIGNIFICANCE: Stem cell therapy for ischemic tissues experiences low therapeutic efficacy largely due to poor cell survival under low oxygen condition. Using cell carriers with high oxygen preservation capability has potential to improve cell survival. In this work, we have developed a family of hydrogels with this property. These hydrogels promoted the encapsulated stem cell survival and growth under low oxygen condition.


Assuntos
Hidrogéis/farmacologia , Oxigênio/farmacologia , Animais , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Módulo de Elasticidade , Hidrogéis/síntese química , Hidrogéis/química , Camundongos Endogâmicos C57BL , Comunicação Parácrina/efeitos dos fármacos , Polímeros/síntese química , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Tela Subcutânea/efeitos dos fármacos , Resistência à Tração , Temperatura de Transição , Água/química
4.
J Control Release ; 311-312: 233-244, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31521744

RESUMO

Following myocardial infarction (MI), the destruction of vasculature in the infarcted heart muscle and progression of cardiac fibrosis lead to cardiac function deterioration. Vascularization of the damaged tissue and prevention of cardiac fibrosis represent promising strategies to improve cardiac function. Herein we have developed a bFGF release system with suitable release kinetics to simultaneously achieve the two goals. The release system was based on an injectable, thermosensitive, and fast gelation hydrogel and bFGF. The hydrogel had gelation time <7 s. It can quickly solidify upon injection into tissue so as to increase drug retention in the tissue. Hydrogel complex modulus can be tuned by hydrogel solution concentration. The complex modulus of 176.6 Pa and lower allowed cardiac fibroblast to maintain its phenotype. Bioactive bFGF was able to gradually release from the hydrogel for 4 weeks. The released bFGF promoted cardiac fibroblast survival under ischemic conditions mimicking those of the infarcted hearts. It also attenuated cardiac fibroblasts from differentiating into myofibroblasts in the presence of TGFß when tested in 3D collagen model mimicking the scenario when the bFGF release system was injected into hearts. Furthermore, the released bFGF stimulated human umbilical endothelial cells to form endothelial lumen. After 4 weeks of implantation into infarcted hearts, the bFGF release system significantly increased blood vessel density, decreased myofibroblast density and collagen content, augmented cardiac cell survival/proliferation, and reduced macrophage density. In addition, the bFGF release system significantly increased cardiac function. These results demonstrate that delivery of bFGF with appropriate release kinetics alone may represent an efficient approach to control cardiac remodeling after MI.


Assuntos
Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Hidrogéis/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Vasos Coronários/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/química , Fibroblastos/efeitos dos fármacos , Fibrose , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Hidrogéis/química , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley
5.
Acta Biomater ; 83: 96-108, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541703

RESUMO

Stem cell therapy is a promising approach to regenerate ischemic cardiovascular tissues yet experiences low efficacy. One of the major causes is inferior cell retention in tissues. Injectable cell carriers that can quickly solidify upon injection into tissues so as to immediately increase viscosity have potential to largely improve cell retention. A family of injectable, fast gelling, and thermosensitive hydrogels were developed for delivering stem cells into heart and skeletal muscle tissues. The hydrogels were also photoluminescent with low photobleaching, allowing for non-invasively tracking hydrogel biodistribution and retention by fluorescent imaging. The hydrogels were polymerized by N-isopropylacrylamide (NIPAAm), 2-hydroxyethyl methacrylate (HEMA), 1-vinyl-2-pyrrolidinone (VP), and acrylate-oligolactide (AOLA), followed by conjugation with hypericin (HYP). The hydrogel solutions had thermal transition temperatures around room temperature, and were readily injectable at 4 °C. The solutions were able to quickly solidify within 7 s at 37 °C. The formed gels were highly flexible possessing similar moduli as the heart and skeletal muscle tissues. In vitro, hydrogel fluorescence intensity decreased proportionally to weight loss. After being injected into thigh muscles, the hydrogel can be detected by an in vivo imaging system for 4 weeks. The hydrogels showed excellent biocompatibility in vitro and in vivo, and can stimulate mesenchymal stem cell (MSC) proliferation and paracrine effects. The fast gelling hydrogel remarkably increased MSC retention in thigh muscles compared to slow gelling collagen, and non-gelling PBS. These hydrogels have potential to efficiently deliver stem cells into tissues. Hydrogel degradation can be non-invasively and real-time tracked. STATEMENT OF SIGNIFICANCE: Low cell retention in tissues represents one of the major causes for limited therapeutic efficacy in stem cell therapy. A family of injectable, fast gelling, and thermosensitive hydrogels that can quickly solidify upon injection into tissues were developed to improve cell retention. The hydrogels were also photoluminescent, allowing for non-invasively and real-time tracking hydrogel biodistribution and retention by fluorescent imaging.


Assuntos
Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Hidrogéis/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Animais , Células Imobilizadas/citologia , Xenoenxertos , Luminescência , Células-Tronco Mesenquimais/citologia , Camundongos , Ratos
6.
Biomaterials ; 182: 44-57, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30103171

RESUMO

The use of degradable materials is required to address current performance and functionality shortcomings from biologically-derived tissues and non-resorbable synthetic materials used for hernia mesh repair applications. Herein a series of degradable l-valine-co-l-phenylalanine poly(ester urea) (PEU) copolymers were investigated for soft-tissue repair. Poly[(1-VAL-8)0.7-co-(1-PHE-6)0.3] showed the highest uniaxial mechanical properties (332.5 ±â€¯3.5 MPa). Additionally, l-valine-co-l-phenylalanine poly(ester urea)s were blade coated on small intestine submucosa extracellular matrix (SIS-ECM) and found to enhance the burst test mechanical properties of SIS-ECM in composite films (force at break between 102.6 ±â€¯6.5-151.4 ±â€¯11.3 N). Free standing films of l-valine-co-l-phenylalanine PEUs were found to have superior extension at break when compared to SIS-ECM (averages between 1.2 and 1.9 cm and 1.2 cm respectively). Fibroblast (L-929) spreading, proliferation, and improved attachment over control were observed without toxicity in vitro, while a reduced inflammatory response at both 7 and 14 days post-implant was observed for poly[(1-VAL-8)⁠0.7-co-(1-PHE-6)⁠0.3] when compared to polypropylene in an in vivo rat hernia model. These results support the use of PEU copolymers as free-standing films or as composite materials in soft-tissue applications for hernia-repair.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Herniorrafia/métodos , Fenilalanina/análogos & derivados , Poliésteres/química , Ureia/análogos & derivados , Valina/análogos & derivados , Animais , Linhagem Celular , Sobrevivência Celular , Módulo de Elasticidade , Hérnia/terapia , Teste de Materiais , Camundongos , Ratos , Ureia/química
7.
Mater Sci Eng C Mater Biol Appl ; 85: 79-87, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407160

RESUMO

Scaffolds with extracellular matrix-like fibrous morphology, suitable mechanical properties, biomineralization capability, and excellent cytocompatibility are desired for bone regeneration. In this work, fibrous and degradable poly(ester urethane)urea (PEUU) scaffolds reinforced with titanium dioxide nanoparticles (nTiO2) were fabricated to possess these properties. To increase the interfacial interaction between PEUU and nTiO2, poly(ester urethane) (PEU) was grafted onto the nTiO2. The scaffolds were fabricated by electrospinning and exhibited fiber diameter of <1µm. SEM and EDX mapping results demonstrated that the PEU modified nTiO2 was homogeneously distributed in the fibers. In contrast, severe agglomeration was found in the scaffolds with unmodified nTiO2. PEU modified nTiO2 significantly increased Young's modulus and tensile stress of the PEUU scaffolds while unmodified nTiO2 significantly decreased Young's modulus and tensile stress. The greatest reinforcement effect was observed for the scaffold with 1:1 ratio of PEUU and PEU modified nTiO2. When incubating in the simulated body fluid over an 8-week period, biomineralization was occurred on the fibers. The scaffolds with PEU modified nTiO2 showed the highest Ca and P deposition than pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. To examine scaffold cytocompatibility, bone marrow-derived mesenchymal stem cells were cultured on the scaffold. The PEUU scaffold with PEU modified nTiO2 demonstrated significantly higher cell proliferation compared to pure PEUU scaffold and PEUU scaffold with unmodified nTiO2. The above results demonstrate that the developed fibrous nanocomposite scaffolds have potential for bone tissue regeneration.


Assuntos
Materiais Biomiméticos/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Nanocompostos/química , Poliuretanos/farmacologia , Alicerces Teciduais/química , Titânio/farmacologia , Animais , Líquidos Corporais/química , Cálcio/análise , Proliferação de Células/efeitos dos fármacos , Hidroxiácidos/síntese química , Hidroxiácidos/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanocompostos/ultraestrutura , Fósforo/análise , Poliuretanos/síntese química , Poliuretanos/química , Propionatos/síntese química , Propionatos/química , Ratos , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Sci Rep ; 8(1): 1371, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358595

RESUMO

Oxygen deficiency after myocardial infarction (MI) leads to massive cardiac cell death. Protection of cardiac cells and promotion of cardiac repair are key therapeutic goals. These goals may be achieved by re-introducing oxygen into the infarcted area. Yet current systemic oxygen delivery approaches cannot efficiently diffuse oxygen into the infarcted area that has extremely low blood flow. In this work, we developed a new oxygen delivery system that can be delivered specifically to the infarcted tissue, and continuously release oxygen to protect the cardiac cells. The system was based on a thermosensitive, injectable and fast gelation hydrogel, and oxygen releasing microspheres. The fast gelation hydrogel was used to increase microsphere retention in the heart tissue. The system was able to continuously release oxygen for 4 weeks. The released oxygen significantly increased survival of cardiac cells under the hypoxic condition (1% O2) mimicking that of the infarcted hearts. It also reduced myofibroblast formation under hypoxic condition (1% O2). After implanting into infarcted hearts for 4 weeks, the released oxygen significantly augmented cell survival, decreased macrophage density, reduced collagen deposition and myofibroblast density, and stimulated tissue angiogenesis, leading to a significant increase in cardiac function.


Assuntos
Hidrogéis/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/citologia , Oxigênio/administração & dosagem , Animais , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Coração/fisiopatologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Injeções , Microesferas , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio/farmacologia , Ratos , Resultado do Tratamento
9.
Biomacromolecules ; 18(9): 2820-2829, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28731675

RESUMO

Following myocardial infarction (MI), degradation of extracellular matrix (ECM) by upregulated matrix metalloproteinases (MMPs) especially MMP-2 decreases tissue mechanical properties, leading to cardiac function deterioration. Attenuation of cardiac ECM degradation at the early stage of MI has the potential to preserve tissue mechanical properties, resulting in cardiac function increase. Yet the strategy for efficiently preventing cardiac ECM degradation remains to be established. Current preclinical approaches have shown limited efficacy because of low drug dosage allocated to the heart tissue, dose-limiting side effects, and cardiac fibrosis. To address these limitations, we have developed a MMP-2 inhibitor delivery system that can be specifically delivered into infarcted hearts at early stage of MI to efficiently prevent MMP-2-mediated ECM degradation. The system was based on an injectable, degradable, fast gelation, and thermosensitive hydrogel, and a MMP-2 specific inhibitor, peptide CTTHWGFTLC (CTT). The use of fast gelation hydrogel allowed to completely retain CTT in the heart tissue. The system was able to release low molecular weight CTT over 4 weeks possibly due to the strong hydrogen bonding between the hydrogel and CTT. The release kinetics was modulated by amount of CTT loaded into the hydrogel, and using chondroitin sulfate and heparin that can interact with CTT and the hydrogel. Both glycosaminoglycans augmented CTT release, while heparin more greatly accelerated the release. After it was injected into the infarcted hearts for 4 weeks, the released CTT efficiently prevented cardiac ECM degradation as it not only increased tissue thickness but also preserved collagen composition similar to that in the normal heart tissue. In addition, the delivery system significantly improved cardiac function. Importantly, the delivery system did not induce cardiac fibrosis. These results demonstrate that the developed MMP-2 inhibitor delivery system has potential to efficiently reduce adverse myocardial remodeling and improve cardiac function.


Assuntos
Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Hidrogéis/síntese química , Inibidores de Metaloproteinases de Matriz/farmacocinética , Infarto do Miocárdio/tratamento farmacológico , Peptídeos Cíclicos/farmacocinética , Animais , Sulfatos de Condroitina/química , Portadores de Fármacos/efeitos adversos , Portadores de Fármacos/química , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Heparina/química , Humanos , Hidrogéis/efeitos adversos , Hidrogéis/química , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/uso terapêutico , Ratos , Ratos Sprague-Dawley
10.
ACS Appl Mater Interfaces ; 8(25): 15948-57, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27281488

RESUMO

Cardiac stem cell therapy has been considered as a promising strategy for heart tissue regeneration. Yet achieving cardiac differentiation after stem cell transplantation remains challenging. This compromises the efficacy of current stem cell therapy. Delivery of cells using matrices that stimulate the cardiac differentiation may improve the degree of cardiac differentiation in the heart tissue. In this report, we investigated whether elastic modulus of highly flexible poly(N-isopropylamide) (PNIPAAm)-based hydrogels can be modulated to stimulate the encapsulated cardiosphere derived cells (CDCs) to differentiate into cardiac lineage under static condition and dynamic stretching that mimics the heart beating condition. We have developed hydrogels whose moduli do not change under both dynamic stretching and static conditions for 14 days. The hydrogels had the same chemical structure but different elastic moduli (11, 21, and 40 kPa). CDCs were encapsulated into these hydrogels and cultured under either native heart-mimicking dynamic stretching environment (12% strain and 1 Hz frequency) or static culture condition. CDCs were able to grow in all three hydrogels. The greatest growth was found in the hydrogel with elastic modulus of 40 kPa. The dynamic stretching condition stimulated CDC growth. The CDCs demonstrated elastic modulus-dependent cardiac differentiation under both static and dynamic stretching conditions as evidenced by gene and protein expressions of cardiac markers such as MYH6, CACNA1c, cTnI, and Connexin 43. The highest differentiation was found in the 40 kPa hydrogel. These results suggest that delivery of CDCs with the 40 kPa hydrogel may enhance cardiac differentiation in the infarct hearts.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco/métodos , Células Cultivadas , Módulo de Elasticidade , Humanos , Células-Tronco Mesenquimais , Infarto do Miocárdio/terapia
11.
Biomater Res ; 20: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226899

RESUMO

Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-ß), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.

12.
ACS Appl Mater Interfaces ; 8(17): 10752-60, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27064934

RESUMO

Stem-cell therapy has the potential to regenerate damaged heart tissue after a heart attack. Injectable hydrogels may be used as stem-cell carriers to improve cell retention in the heart tissue. However, current hydrogels are not ideal to serve as cell carriers because most of them block blood vessels after solidification. In addition, these hydrogels have a relatively slow gelation rate (typically >60 s), which does not allow them to quickly solidify upon injection, so as to efficiently hold cells in the heart tissue. As a result, the hydrogels and cells are squeezed out of the tissue, leading to low cell retention. To address these issues, we have developed hydrogels that can quickly solidify at the pH of an infarcted heart (6-7) at 37 °C but cannot solidify at the pH of blood (7.4) at 37 °C. These hydrogels are also clinically attractive because they can be injected through catheters commonly used for minimally invasive surgeries. The hydrogels were synthesized by free-radical polymerization of N-isopropylacrylamide, propylacrylic acid, hydroxyethyl methacrylate-co-oligo(trimethylene carbonate), and methacrylate poly(ethylene oxide) methoxy ester. Hydrogel solutions were injectable through 0.2-mm-diameter catheters at pH 8.0 at 37 °C, and they can quickly form solid gels under pH 6.5 at 37 °C. All of the hydrogels showed pH-dependent degradation and mechanical properties with less mass loss and greater complex shear modulus at pH 6.5 than at pH 7.4. When cardiosphere-derived cells (CDCs) were encapsulated in the hydrogels, the cells were able to survive during a 7-day culture period. The surviving cells were differentiated into cardiac cells, as evidenced by the expression of cardiac markers at both the gene and protein levels, such as cardiac troponin T, myosin heavy chain α, calcium channel CACNA1c, cardiac troponin I, and connexin 43. The gel integrity was found to largely affect CDC cardiac differentiation. These results suggest that the developed dual-sensitive hydrogels may be promising carriers for cardiac cell therapy.


Assuntos
Hidrogéis/química , Acrilamidas , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco
13.
Acta Biomater ; 31: 99-113, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26689466

RESUMO

Stem cell therapy is one of the most promising strategies to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the low oxygen and nutrient environment of the injured limbs. To increase therapeutic efficacy, high rates of both short- and long-term cell survival are essential, which current approaches do not support. In this work, we hypothesized that a high rate of short-term cell survival can be achieved by introducing a prosurvival environment into the stem cell delivery system to enhance cell survival before vascularization is established; and that a high rate of long-term cell survival can be attained by building a proangiogenic environment in the system to quickly vascularize the limbs. The system was based on a biodegradable and thermosensitive poly(N-Isopropylacrylamide)-based hydrogel, a prosurvival and proangiogenic growth factor bFGF, and bone marrow-derived mesenchymal stem cells (MSCs). bFGF can be continuously released from the system for 4weeks. The released bFGF significantly improved MSC survival and paracrine effects under low nutrient and oxygen conditions (0% FBS and 1% O2) in vitro. The prosurvival effect of the bFGF on MSCs was resulted from activating cell Kruppel-like factor 4 (KLF4) pathway. When transplanted into the ischemic limbs, the system dramatically improved MSC survival. Some of the engrafted cells were differentiated into skeletal muscle and endothelial cells, respectively. The system also promoted the proliferation of host cells. After only 2weeks of implantation, tissue blood perfusion was completely recovered; and after 4weeks, the muscle fiber diameter was restored similarly to that of the normal limbs. These pronounced results demonstrate that the developed stem cell delivery system has a potential for ischemic limb regeneration. STATEMENT OF SIGNIFICANCE: Stem cell therapy is a promising strategy to restore blood perfusion and promote muscle regeneration in ischemic limbs. Yet its therapeutic efficacy remains low owing to the inferior cell survival under the ischemic environment of the injured limbs. To increase therapeutic efficacy, high rate of cell survival is essential, which current approaches do not support. In this work, we tested the hypothesis that a stem cell delivery system that can continuously release a prosurvival and proangiogenic growth factor will promote high rates of cell survival in the ischemic limbs. The prosurvival effect could augment cell survival before vascularization is established, while the proangiogenic effect could stimulate quick angiogenesis to achieve long-term cell survival. Meanwhile, the differentiation of stem cells into endothelial and myogenic lineages, and cell paracrine effects will enhance vascularization and muscle regeneration.


Assuntos
Extremidades/patologia , Isquemia/patologia , Neovascularização Fisiológica , Regeneração , Células-Tronco/citologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hidrogéis/química , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oxigênio/química , Perfusão
14.
Acta Biomater ; 26: 23-33, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277379

RESUMO

Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. STATEMENT OF SIGNIFICANCE: Stem cell therapy for skeletal muscle regeneration in ischemic limb experiences low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as hydrogel modulus may be modulated to induce the differentiation. Yet current approaches used to modulate hydrogel modulus may simultaneously vary other properties that also affect stem cell myogenic differentiation, such as chemistry, composition and water content. In this report, we decoupled the hydrogel modulus from chemistry, composition, and water content using injectable and thermosensitive hydrogels. We found that mesenchymal stem cells best differentiated into myogenic lineage in the hydrogel with elastic modulus of 20 kPa.


Assuntos
Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/fisiologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Módulo de Elasticidade , Mecanotransdução Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Ratos , Temperatura
15.
J Biol Chem ; 290(40): 24592-603, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26306047

RESUMO

Cell membrane repair is an important aspect of physiology, and disruption of this process can result in pathophysiology in a number of different tissues, including wound healing, chronic ulcer and scarring. We have previously identified a novel tripartite motif family protein, MG53, as an essential component of the cell membrane repair machinery. Here we report the functional role of MG53 in the modulation of wound healing and scarring. Although MG53 is absent from keratinocytes and fibroblasts, remarkable defects in skin architecture and collagen overproduction are observed in mg53(-/-) mice, and these animals display delayed wound healing and abnormal scarring. Recombinant human MG53 (rhMG53) protein, encapsulated in a hydrogel formulation, facilitates wound healing and prevents scarring in rodent models of dermal injuries. An in vitro study shows that rhMG53 protects against acute injury to keratinocytes and facilitates the migration of fibroblasts in response to scratch wounding. During fibrotic remodeling, rhMG53 interferes with TGF-ß-dependent activation of myofibroblast differentiation. The resulting down-regulation of α smooth muscle actin and extracellular matrix proteins contributes to reduced scarring. Overall, these studies establish a trifunctional role for MG53 as a facilitator of rapid injury repair, a mediator of cell migration, and a modulator of myofibroblast differentiation during wound healing. Targeting the functional interaction between MG53 and TGF-ß signaling may present a potentially effective means for promoting scarless wound healing.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Proteínas Musculares/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Cicatrização/fisiologia , Células 3T3 , Actinas/metabolismo , Animais , Diferenciação Celular , Movimento Celular , Cicatriz/patologia , Colágeno Tipo I/metabolismo , Fibroblastos/citologia , Fibronectinas/metabolismo , Fibrose/patologia , Regulação da Expressão Gênica , Humanos , Hidrogéis/química , Queratinócitos/metabolismo , Proteínas de Membrana , Camundongos , Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Coelhos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Pele/patologia , Proteínas com Motivo Tripartido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...