Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Deliv ; 25(1): 1302-1318, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29869524

RESUMO

Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/química , Glioma/tratamento farmacológico , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Curcumina/administração & dosagem , Curcumina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Glutâmico/química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Micelas , Células-Tronco Neoplásicas/efeitos dos fármacos , Polilisina/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , alfa-Tocoferol/química
2.
Int J Nanomedicine ; 13: 681-694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29440894

RESUMO

INTRODUCTION: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI). METHODS: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug. By tuning the concentration of HP in formulation, the cold ternary fibroblast growth factor-2 (FGF2)-dscECM-HP solution could rapidly gelatinize into a hydrogel at body temperature. Due to the strong affinity for FGF2, hybrid FGF2-dscECM-HP hydrogel enabled sustained-release of encapsulated FGF2 over an extended period in vitro. RESULTS: Compared to free FGF2, it was observed that both neuron functions and tissue morphology after SCI were clearly recovered in rats treated with FGF2-dscECM-HP hydrogel. Moreover, the expression of neurofilament protein and the density of axons were increased after treatment with hybrid FGF2-dscECM-HP. In addition, the neuroprotective effects of FGF2-dscECM-HP were related to inhibition of chronic endoplasmic reticulum stress-induced apoptosis. CONCLUSION: The results revealed that a hybrid hydrogel system may be a potential carrier to deliver macromolecular proteins to the injured site and enhance the therapeutic effects of proteins.


Assuntos
Matriz Extracelular/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Axônios/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Heparina/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacocinética , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Células PC12 , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia , Traumatismos da Medula Espinal/patologia , Temperatura
3.
Colloids Surf B Biointerfaces ; 160: 704-714, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29035818

RESUMO

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin. A novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL) was synthesized and self-assembled into polymeric nanoparticles. The nanoparticles of VES-g-ε-PLL exhibiting an ultra-small hydrodynamic diameter (24.4nm) and a positive Zeta potential (19.6mV) provided a strong skin-penetrating ability in vivo. Moreover, curcumin could effectively be encapsulated in the polymeric nanoparticles with a drug loading capacity of 3.49% and an encapsulating efficiency of 78.45%. In order to prolong the retention time of the ultra-small curcumin-loaded nanoparticles (CUR-NPs) in the skin, silk fibroin was used as a hydrogel-based matrix to further facilitate topical delivery of the model drug. In vitro studies showed that CUR-NPs incorporated in silk fibroin hydrogel (CUR-NPs-gel) exhibited a slower release profile of curcumin than the plain CUR-gel, without compromising the skin penetration ability of CUR-NPs. In vivo studies on miquimod-induced psoriatic mice showed that CUR-NPs-gel exhibited a higher therapeutic effect than CUR-NPs as the former demonstrated a more powerful skin-permeating capability and a more effective anti-keratinization process. CUR-NPs-gel was therefore able to inhibit the expression of inflammatory cytokines (TNF-α, NF-κB and IL-6) to a greater extent. In conclusion, the permeable nanoparticle-gel system may be a potential carrier for the topical delivery of lipophilic anti-psoriatic drugs.


Assuntos
Curcumina/administração & dosagem , Fibroínas/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanopartículas/química , Psoríase/tratamento farmacológico , Pele/metabolismo , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Curcumina/química , Curcumina/farmacocinética , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Polímeros/química , Psoríase/patologia , Seda/química
4.
Colloids Surf B Biointerfaces ; 158: 295-307, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28711016

RESUMO

Severe toxicity and poor tumour penetration are two intrinsic limited factors to hinder the broad clinical application for most of first-line chemotherapeutics. In this study, a novel vitamin E succinate-grafted ε-polylysine (VES-g-PLL) polymer was synthesized by using ε-polylysine as backbone. By adjusting VES graft ratio, VES-g-PLL (50) with a theoretic VES graft ratio of 50% could self-assemble into a supermolecular micelle with a hydrodynamic diameter (Dh) of ca.20nm, and Zeta potential of 19.6mV. VES-g-PLL micelles themselves displayed a strong anti-tumour effect on glioma. The poorly water-soluble curcumin was effectively encapsulated in VES-g-PLL micelles with the drug loading amount and entrapment efficiency reaching 4.32% and 82.27%, respectively. In a physiologic medium, curcumin-loaded VES-g-PLL micelles (Cur-Micelles) not only remained stable without obvious drug leakage but also sustained the release of its encapsulated curcumin for a long time. Because of the ultra-small size and positively-charged surface, Cur-Micelles penetrated the deeper tumour zone than free curcumin, resulting in a significant inhibition of tumour spheroids growth. Moreover, in vivo strong antitumor effect of Cur-Micelles was also exhibited at assistance of ultrasound-targeted microbubble destruction and the real-time MRI imaging demonstrated a nearly complete suppression of glioma after 28days of treatment. TUNEL staining showed that the therapeutic mechanism of Cur-Micelles was relevant to the apoptosis of tumour cells. Finally, in vivo nontoxicity of Cur-Micelles against normal organs including heart, liver, spleen, lung and kidney tissues was also demonstrated by the HE staining. In conclusion, VES-g-PLL micelles may serve as a potential carrier for curcumin to enhance tumour penetration and improve therapeutic effect on glioma.


Assuntos
Curcumina/química , Micelas , Polilisina/química , Apoptose/efeitos dos fármacos , Curcumina/farmacologia , Glioma/metabolismo , Humanos , Marcação In Situ das Extremidades Cortadas , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Células MCF-7 , Baço/metabolismo , alfa-Tocoferol/análogos & derivados , alfa-Tocoferol/metabolismo
5.
Int J Pharm ; 517(1-2): 383-394, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28007548

RESUMO

Extracellular matrix-based biomaterials have many advantages over synthetic polymer materials for regenerative medicine applications. In central nervous system (CNS), basic fibroblast growth factor (bFGF) is widely studied as a potential agent for Parkinson's disease (PD). However, the poor stability of bFGF hampered its clinical use. In this study, CNS-derived biologic scaffold containing bFGF was used to enhance and extend the neuroprotective effect of bFGF on PD targeted therapy. Decellularized brain extracellular matrix (dcBECM) was prepared by chemical extraction. The biocompatibility of dcBECM was evaluated using CCK-8 assay and magnetic resonance imaging (MRI). The controlled-release behavior of dcBECM containing bFGF (bFGF+dcBECM) was confirmed by ELISA assay. Furthermore, the cytocompatibility and neuroprotective effect of bFGF+dcBECM was evaluated in vitro and in vivo. From results, dcBECM showed a three-dimensional network structure with high biocompatibility. MRI of dcBECM implanted rats showed nearly seamless fusion of dcBECM with the adjoining tissues. The cumulative release rate of bFGF+dcBECM in vitro reached to 75.88% at 10h and maintained sustained release trend during the observation. ELISA results in vivo further confirmed the sustained-release behavior (from 12h to 3d) of bFGF+dcBECM in brain tissues. Among the experimental groups, bFGF+dcBECM group showed the highest cell survival rate of PD model cells, improved behavioral recovery and positive expressions of neurotrophic proteins in PD recovered rats. In conclusion, sustained neuroprotection in PD rats was achieved by using bFGF+dcBECM. The combination of dcBECM and bFGF would be a promising therapeutic strategy to realize an effective and safe alternative for CNS disease treatment.


Assuntos
Encéfalo/cirurgia , Matriz Extracelular/transplante , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neuroproteção , Doença de Parkinson/cirurgia , Transplante/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Teste de Materiais , Fatores de Crescimento Neural/metabolismo , Neuroimagem , Ratos
6.
Sci Rep ; 6: 38332, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922061

RESUMO

Because of the short half-life, either systemic or local administration of bFGF shows significant drawbacks to spinal injury. In this study, an acellular spinal cord scaffold (ASC) was encapsulated in a thermo-sensitive hydrogel to overcome these limitations. The ASC was firstly prepared from the spinal cord of healthy rats and characterized by scanning electronic microscopy and immunohistochemical staining. bFGF could specifically complex with the ASC scaffold via electrostatic or receptor-mediated interactions. The bFGF-ASC complex was further encapsulated into a heparin modified poloxamer (HP) solution to prepare atemperature-sensitive hydrogel (bFGF-ASC-HP). bFGF release from the ASC-HP hydrogel was more slower than that from the bFGF-ASC complex alone. An in vitro cell survival study showed that the bFGF-ASC-HP hydrogel could more effectively promote the proliferation of PC12 cells than a bFGF solution, with an approximate 50% increase in the cell survival rate within 24 h (P < 0.05). Compared with the bFGF solution, bFGF-ASC-HP hydrogel displayed enhanced inhibition of glial scars and obviously improved the functional recovery of the SCI model rat through regeneration of nerve axons and the differentiation of the neural stem cells. In summary, an ASC-HP hydrogel might be a promising carrier to deliver bFGF to an injured spinal cord.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Hidrogéis/química , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacocinética , Heparina/química , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Células PC12 , Poloxâmero/química , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Temperatura , Alicerces Teciduais
7.
Biomaterials ; 107: 44-60, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614158

RESUMO

Intratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL). The nanoparticles (NPs) of VES-g-ε-PLL exhibited an ultra-small hydrodynamic diameter (20.8 nm) and positive zeta potential (20.6 mV), which facilitate strong glioma spheroid penetration ability in vitro. Additionally, the hydrophobic model drug docetaxel (DTX) could be effectively encapsulated in the nanoparticles with 3.99% drug loading and 73.37% encapsulation efficiency. To prolong the retention time of DTX-loaded nanoparticles (DTX-NPs) in the tumor, intact decellularized brain extracellular matrix (dBECM) derived from healthy rats was used as a drug depot to adsorb the ultra-small DTX-NPs. The intact DTX-NPs-adsorbing dBECM scaffold was further homogenized into an injectable DTX-NPs-dBECM suspension for intratumoral administration. The DTX-NPs-dBECM suspension exhibited slower DTX release than naked DTX-NPs without compromising the tumor penetration ability of DTX-NPs. An antitumor study showed that the DTX-NPs-dBECM suspension exhibited more powerful in vitro inhibition of tumor spheroid growth than free DTX solution or DTX-NPs. Due to strong tumor penetration ability and prolonged retention, DTX-NPs-dBECM led to complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism was due to enhanced proliferation inhibition and apoptosis of tumor cells and angiogenesis inhibition of glioma after treatment with DTX-NPs-dBECM. Finally, the safety of DTX-NPs-dBECM at the therapeutic dose was demonstrated via pathological HE assay from heart, liver, spleen, lung and kidney tissues. In conclusion, permeable nanoparticle-absorbing dBECM is a potential carrier for intratumoral delivery of common chemotherapeutics.


Assuntos
Preparações de Ação Retardada/administração & dosagem , Matriz Extracelular/química , Glioblastoma/tratamento farmacológico , Taxoides/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sistema Livre de Células/química , Preparações de Ação Retardada/síntese química , Docetaxel , Sinergismo Farmacológico , Emulsões/química , Glioblastoma/patologia , Injeções Intralesionais , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Taxoides/química , Resultado do Tratamento
8.
Nanoscale ; 8(29): 14222-36, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27396404

RESUMO

Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX. DOX-loaded multifunctional nanoparticles (DOX@Ps 80-SPIONs) with a Dh of 58.0 nm, a zeta potential of 28.0 mV, and a drug loading content of 29.3% presented superior superparamagnetic properties with a saturation magnetization (Ms) of 24.1 emu g(-1). The cellular uptake of DOX@Ps 80-SPIONs by C6 cells under a magnetic field was significantly enhanced over that of free DOX in solution, resulting in stronger in vitro cytotoxicity. The real-time therapeutic outcome of DOX@Ps 80-SPIONs was easily monitored by MRI. Furthermore, the negative contrast enhancement effect of the nanoparticles was confirmed in glioma-bearing rats. Prussian blue staining and ex vivo DOX fluorescence assays showed that the magnetic Ps 80-SPIONs and encapsulated DOX were delivered to gliomas by imposing external magnetic fields, indicating effective magnetic targeting. Due to magnetic targeting and Ps 80-mediated endocytosis, DOX@Ps 80-SPIONs in the presence of a magnetic field led to the complete suppression of glioma growth in vivo at 28 days after treatment. The therapeutic mechanism of DOX@Ps 80-SPIONs acted by inducing apoptosis through the caspase-3 pathway. Finally, DOX@Ps 80-SPIONs' safety at therapeutic dosage was verified using pathological HE assays of the heart, liver, spleen, lung and kidney. Multifunctional SPIONs could be used as potential carriers for the theranostic treatment of CNS diseases.

9.
Cardiovasc Drugs Ther ; 30(3): 247-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26947349

RESUMO

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM). From Picrosirius Red staining and TUNEL staining, the aFGF-HMB/UTMD group showed significant difference from the other groups. The cardiac collagen volume fraction (CVF) and myocardial cell apoptosis index (AI) in aFGF-HMB/UTMD group decreased to 7.2 % and 7.11 % respectively, compared with the DM group (CVF = 24.5 % and AI =20.3 % respectively). The results of myocardial microvascular density (MCD) also proved the strongest inhibition of aFGF-HMB/UTMD group on DCM progress. CD31 staining of aFGF-HMB/UTMD group reached 22 n/hrp, much higher than that of DM group (9 n/hrp). These results confirmed that the abnormalities including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and microvascular rarefaction could be suppressed by twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-HMB+/-UTMD), with the strongest improvements observed in the aFGF-HMB/UTMD group (P < 0.05 vs free aFGF or aFGF-HMB). Western blot analyses of heart tissue further revealed the highest aFGF, anti-apoptosis protein (Bcl-2), VEGF-C, pAkt, pFoxo-3a levels and strongest reduction in pro-apoptosis proteins (Bax) level in aFGF-HMB/UTMD group. Overall, aFGF-HMB combined with UTMD technique might be developed as an effective strategy to prevent DCM in future clinical therapy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Heparina/administração & dosagem , Hipoglicemiantes/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Diabetes Mellitus Tipo 1/metabolismo , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/metabolismo , Ecocardiografia , Fator 1 de Crescimento de Fibroblastos/farmacocinética , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Coração/diagnóstico por imagem , Heparina/química , Heparina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Masculino , Microbolhas , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Ondas Ultrassônicas , Proteína X Associada a bcl-2/metabolismo
10.
Cancer Chemother Pharmacol ; 77(2): 269-80, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26666650

RESUMO

Brain tumor lacks effective delivery system for treatment. Focused ultrasound (FUS) can reversibly open BBB without impacts on normal tissues. As a potential drug carrier, cationic liposomes (CLs) have the ability to passively accumulate in tumor tissues for their positive charge. In this study, FUS introduced doxorubicin-loaded cationic liposomes (DOX-CLs) were applied to improve the efficiency of glioma-targeted delivery. Doxorubicin-loaded CLs (DOX-CLs) and quantum dot-loaded cationic liposomes (QD-CLs) were prepared using extrusion technology, and their characterizations were evaluated. With the advantage of QDs in tracing images, the glioma-targeted accumulation of FUS + CLs was evaluated by fluorescence imaging and flow cytometer. Cell survival rate, tumor volume, animal survival time, and brain histology in C6 glioma model were investigated to evaluate the glioma-targeted delivery of FUS + DOX-CLs. DOX-CLs and QD-CLs had suitable nanoscale sizes and high entrapment efficiency. The combined strategy of FUS introduced CLs significantly increased the glioma-targeted accumulation for load drugs. FUS + DOX-CLs showed the strongest inhibition on glioma based on glioma cell in vitro and glioma model in vivo experiments. From MRI and histological analysis, FUS + DOX-CLs group strongly suppressed the glioma progression and extended the animal survival time to 81.2 days. Among all the DOX treatment groups, FUS + DOX-CLs group showed the best cell viability and highest level of tumor apoptosis and necrosis. Combining the advantages of BBB reversible opening by FUS and glioma-targeted binding by CLs, ultrasound introduced cationic liposomes could achieve glioma-targeted delivery, which might be developed as a potential strategy for future brain tumor therapy.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos/métodos , Glioma , Ultrassonografia de Intervenção/métodos , Animais , Antibióticos Antineoplásicos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Glioma/tratamento farmacológico , Glioma/patologia , Polietilenoglicóis/farmacologia , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Carga Tumoral
11.
J Control Release ; 223: 11-21, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26712588

RESUMO

Acidic fibroblast growth factor (aFGF) has shown the great potential to prevent the structural and functional injuries caused by diabetic cardiomyopathy (DCM). The present study sought to investigate the preclinical performance and mechanism of the combination therapy of aFGF-nanoparticles (aFGF-NP) and ultrasound-targeted microbubble destruction (UTMD) technique for DCM prevention. From Mason staining and TUNEL staining, aFGF-NP+UTMD group showed significant differences from the diabetes group and other groups treated with aFGF or aFGF-NP. The cardiac collagen volume fraction (CVF) and cardiac myocyte apoptosis index in aFGF-NP+UTMD group reduced to 4.15% and 2.31% respectively, compared with those in the diabetes group (20.5% and 11.3% respectively). Myocardial microvascular density (MCD) in aFGF-NP+UTMD group was up to 35n/hpf, much higher than that in the diabetes group (14n/hpf). The diabetes group showed similar results (MCD, CVF and cardiac myocyte apoptosis index) to other aFGF treatment groups (free aFGF±UTMD or aFGF-NP). Indexes from transthoracic echocardiography and hemodynamic evaluation also proved the same conclusion. These results confirmed that the abnormalities including diastolic dysfunctions, myocardial fibrosis and metabolic could be suppressed by the different extents of twice weekly aFGF treatments for 12 consecutive weeks (free aFGF or aFGF-NP±UTMD), with the strongest improvements observed in the aFGF-NP+UTMD group. Western blot and immunohistochemical analyses of heart tissue samples further revealed the high efficiency of heart-targeted delivery and effective cardioprotection with this combination approach. Overall, this study has generated supportive data that are critical for the translation of a promising DCM prevention strategy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Fator 1 de Crescimento de Fibroblastos/administração & dosagem , Microbolhas , Nanopartículas/administração & dosagem , Ondas Ultrassônicas , Animais , Apoptose/efeitos dos fármacos , Circulação Coronária/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/fisiopatologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Coração/fisiopatologia , Masculino , Camundongos , Microvasos/efeitos dos fármacos , Miocárdio/patologia , Células NIH 3T3 , Nanopartículas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/tratamento farmacológico , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...