Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 18(3): 807-821, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356316

RESUMO

Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.


Assuntos
Alginatos/química , Ácido Ascórbico/química , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Nanopartículas/química , Rifampina/metabolismo , Rifampina/toxicidade , Células A549 , Alginatos/metabolismo , Alginatos/toxicidade , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Ácido Ascórbico/metabolismo , Ácido Ascórbico/toxicidade , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Quitosana/metabolismo , Quitosana/toxicidade , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Masculino , Nanopartículas/metabolismo , Nanopartículas/toxicidade , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/toxicidade , Polímeros/metabolismo , Polímeros/toxicidade , Ratos , Ratos Wistar , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Rifampina/farmacologia , Suínos , Distribuição Tecidual
2.
Colloids Surf B Biointerfaces ; 173: 549-556, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347381

RESUMO

Membrane structure is a key factor for the cell`s physiology, pathology, and therapy. Evaluating the importance of lipid species such as N-nervonoyl sphingomyelin (24:1-SM) -able to prevent phase separation- to membrane structuring remains a formidable challenge. This is the first report in which polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) is applied to investigate the lipid-lipid interactions in 16:0 vs 24:1-SM monolayers and their mixtures with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Chol) (DOPC/SM/Chol 2:1:1). From the results we inferred that the cis double bond (Δ15) in 24:1-SM molecule diminishes intermolecular H-bonding and chain packing density compared to that of 16:0-SM. In ternary mixtures containing 16:0-SM, the relative intensity of the two components of the Amide I band reflected changes in the H-bonding network due to SM-Chol interactions. In contrast, the contribution of the main components of the Amide I band in DOPC/24:1-SM/Chol remained as in 24:1-SM monolayers, with a larger contribution of the non-H-bonded component. The most interesting feature in these ternary films is that the CO stretching mode of DOPC appeared with an intensity similar to that of SM Amide I band in DOPC/16:0-SM/Chol monolayers (a two-phase [Lo/Le] system), whereas an extremely low intensity of the CO band was detected in DOPC/24:1-SM/Chol monolayers (single Le phase). This is evidence that the unsaturation in 24:1-SM affected not only the conformational properties of acyl chains but also the orientation of the chemical groups at the air/water interface. The physical properties and overall H-bonding ability conferred by 24:1-SM may have implications in cell signaling and binding of biomolecules.


Assuntos
Colesterol/química , Fosfatidilcolinas/química , Esfingomielinas/química , Lipossomas Unilamelares/química , Ligação de Hidrogênio , Espectroscopia de Luz Próxima ao Infravermelho/métodos
3.
Langmuir ; 34(14): 4398-4407, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29540057

RESUMO

In rat sperm heads, sphingomyelin (SM) species that contain very long-chain polyunsaturated fatty acid (V-SM) become ceramides (V-Cer) after inducing in vitro the acrosomal reaction. The reason for such a specific location of this conversion, catalyzed by a sphingomyelinase (SMase), has received little investigation so far. Here, the effects of SMase were compared in unilamellar vesicles (large unilamellar vesicles (LUVs), giant unilamellar vesicles (GUVs)) containing phosphatidylcholine, and either V-SM or a palmitate-rich SM (P-SM). In uniformly sized LUVs at 37 °C, more V-Cer was generated and more rapidly than P-Cer. Nephelometry and dynamic light scattering showed that LUVs tended to form large lipid particles more intensely, and Förster resonance energy transfer (FRET) increases suggested that lateral lipid mixing was more marked when V-Cer rather than P-Cer was produced. As reported by 6-dodecanoyl-2-dimethyl-aminopnaphthalene (Laurdan) and 1,6-diphenyl-1,3,5,-hexatriene (DPH), the production of V-Cer resulted in higher and faster restriction in lipid mobility than that of P-Cer, implying a stronger increase in membrane dehydration and microviscosity. Moreover, DPH anisotropy suggested a higher solubility of V-Cer than that of P-Cer in the liquid-disordered phase. At room temperature, liquid-condensed lateral domains appeared in P-SM- but not in V-SM-containing GUVs. The former maintained their size while losing their contents gradually during SMase action, whereas the latter became permeable earlier and reduced their size in few minutes until suddenly collapsing. The fast and potent generation of V-Cer may contribute to the membrane restructuring events that occur on the acrosome-reacted sperm head.


Assuntos
Ceramidas/química , Animais , Ácidos Graxos Insaturados , Masculino , Fosfatidilcolinas , Ratos , Esfingomielina Fosfodiesterase , Esfingomielinas
4.
Langmuir ; 30(15): 4385-95, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24678907

RESUMO

Molecular species of sphingomyelin (SM) with nonhydroxy (n) and 2-hydroxy (h) very long chain polyunsaturated fatty acids (n- and h-28:4, 30:5, and 32:5) abound in rat spermatogenic cells and spermatozoa. These SMs are located on the sperm head, where they are converted to the corresponding ceramides (Cer) after the completion of the acrosomal reaction, as induced in vitro. The aim of this study was to look into the surface properties of these unique SM species and how these properties change by the SM → Cer conversion. After isolation by HPLC, these SMs were organized in Langmuir films and studied alone, in combination with different proportions of Cer, and during their conversion to Cer by sphingomyelinase. Compression isotherms for all six SMs under study were compatible with a liquid-expanded (LE) state and showed large molecular areas. Only the longest SMs (n-32:5 and h-32:5 SM) underwent a phase transition upon cooling. Interestingly, the abundant h-28:4 Cer exhibited a highly compressible liquid-condensed (LC) phase compatible with a high conformational freedom of Cer molecules but with the characteristic low diffusional properties of the LC phase. In mixed films of h-28:4 SM/h-28:4 Cer, the components showed favorable mixing in the LE phase. The monolayer exhibited h-28:4 Cer-rich domains both in premixed films and when formed by the action of sphingomyelinase on pure h-28:4 SM films. Whereas the SMs from sperm behaved in a way similar to that of shorter acylated SMs, the corresponding Cers showed atypical rheological properties that may be relevant to the membrane structural rearrangements that take place on the sperm head after the completion of the acrosomal reaction.


Assuntos
Ceramidas/química , Ácidos Graxos Insaturados/química , Esfingomielinas/química , Cromatografia Líquida de Alta Pressão , Esfingomielina Fosfodiesterase/metabolismo
5.
Biochim Biophys Acta ; 1838(7): 1832-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24613790

RESUMO

α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale-both in situ and in real-time-the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
6.
Biochim Biophys Acta ; 1838(3): 731-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24315999

RESUMO

Unique species of ceramide (Cer) with very-long-chain polyunsaturated fatty acid (VLCPUFA), mainly 28-32 carbon atoms, 4-5 double bonds, in nonhydroxy and 2-hydroxy forms (n-V Cer and h-V Cer, respectively), are generated in rat spermatozoa from the corresponding sphingomyelins during the acrosomal reaction. The aim of this study was to determine the properties of these sperm-distinctive ceramides in Langmuir monolayers. Individual Cer species were isolated by HPLC and subjected to analysis of surface pressure, surface potential, and Brewster angle microscopy (BAM) as a function of molecular packing. In comparison with known species of Cer, n-V Cer and h-V Cer species showed much larger mean molecular areas and increased molecular dipole moments in liquid expanded phases, which suggest bending and partial hydration of the double bonded portion of the VLCPUFA. The presence of the 2-hydoxyl group induced a closer molecular packing in h-V Cer than in their chain-matched n-V Cer. In addition, all these Cer species showed liquid-expanded to liquid-condensed transitions at room temperature. Existence of domain segregation was confirmed by BAM. Additionally, thermodynamic analysis suggests a phase transition close to the physiological temperature for VLCPUFA-Cers if organized as bulk dispersions.


Assuntos
Ceramidas/química , Ceramidas/metabolismo , Ácidos Graxos Insaturados/metabolismo , Espermatozoides/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos Insaturados/química , Masculino , Transição de Fase , Ratos , Propriedades de Superfície , Termodinâmica
7.
Biochim Biophys Acta ; 1828(9): 2056-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23727527

RESUMO

It was proposed that topographic changes in lipid monolayers hydrolyzed by lipolytic enzymes such as Phospholipase A2 (PLA2) are a consequence of enzyme activity at the surface. Lateral packing defects that arise from lipid phase coexistence were suggested as places at which PLA2 activity is preferably localized. Our work employs a method for mixing two lipid monolayers in order to simulate lipid mixing of products and substrate at the surface in the absence of enzyme. In such enzyme-free mixed films, a topographic pattern similar to that actively generated by PLA2 is observed. The main conclusion from our experiments is that mixing-demixing properties of substrate and products generated by PLA2 can determine the evolution of the surface topography.


Assuntos
Fosfatidilcolinas/química , Fosfolipases A2/química , Animais , Carbocianinas , Corantes Fluorescentes , Hidrólise , Cinética , Microscopia de Fluorescência , Soluções , Propriedades de Superfície , Suínos
8.
Cell Biochem Biophys ; 50(2): 79-109, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17968678

RESUMO

Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid-protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Esfingolipídeos/química , Animais , Humanos , Microscopia/métodos , Bainha de Mielina/química , Espectrometria de Fluorescência/métodos , Eletricidade Estática , Propriedades de Superfície
9.
Neurochem Res ; 27(7-8): 547-57, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12374189

RESUMO

In this work we describe two aspects of molecular and supramolecular information transduction. The first is the biochemical and structural information content and transduction associated with sphingomyelinase activity. The results disclose a lipid-mediated cross-communication between the sphingomyelinase and phospholipase A2 pathways. In addition, the two-dimensional degradation of sphingomyelin by sphingomyelinase affects the surface topography and the latter modulates the enzyme activity. The second is the information contained in the compositionally driven lateral organization of whole glial and neuronal membrane interfaces. The myelin monolayer exhibits microheterogeneous topographical structuring and nonhomogeneous lateral thickness of phase separated regions, depending dynamically on the lateral surface pressure. On the other hand, the differential response of functional living cells depends on information contained in the molecular organization of the contacting membrane interface.


Assuntos
Esfingolipídeos/metabolismo , Hidrólise , Fosfolipases A/metabolismo , Fosfolipases A2 , Esfingolipídeos/química , Esfingomielina Fosfodiesterase/metabolismo , Propriedades de Superfície , Fosfolipases Tipo C/metabolismo
10.
Biochem Biophys Res Commun ; 295(4): 964-9, 2002 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-12127989

RESUMO

c-Fos, a transcription factor, associates to endoplasmic reticulum and modulates phospholipid biosynthesis. Its surface thermodynamic properties allow it to differentially interact with phospholipid monolayers with a selective dependence on the lipid polar head group and the lateral surface pressure. We explored the c-Fos ability to modulate phospholipid degradation by phospholipases (ppPLA2, Bacillus cereus PLC, and sphingomyelinase) using the monolayer technique. Experiments conducted under constant packing conditions show that c-Fos modulates phospholipase activity in a finely tuned way, depending on the membrane intermolecular packing. Surface lateral pressures above 12-16 mN/m induce c-Fos to activate phospholipase A2 and sphingomyelinase, and abolish phospholipase C activity. The effects of c-Fos on other steps of the catalytic process, lag-time and extent, are synergic with those on activity. We show for the first time that c-Fos participates in modulating phospholipid degradation and that it can affect the formation of lipid second messenger products by PLA2, PLC, and sphingomyelinase.


Assuntos
Fosfolipases A/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/metabolismo , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Fosfolipases Tipo C/antagonistas & inibidores , Animais , Bacillus cereus/enzimologia , Catálise , DNA/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fosfolipases A2 , Fosfolipídeos/metabolismo , Pressão , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Suínos , Fatores de Tempo , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...