Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(12)2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37375897

RESUMO

According to the WHO, the overall age-standardized cancer rate keeps declining, and the number of cases diagnosed each year increases, remaining among the leading causes of death in 91 out of 172 recorded countries. In this context, novel cancer prediction and therapeutic protocols are compulsory. The effect of a Stachys circinata L'Hér dichloromethane extract (ScDME) on cell redox homeostasis and tumor proliferation was investigated. HepG2 cell feedback mechanisms to oxidative stress exposure were evaluated by determining catalase (CAT) and reduced glutathione (GSH), following the supply with ScDME (0.0-5.7 µg/µL). Cytotoxicity of ScDME against the human umbilical vein endothelial cell (HUVEC) and two human cancer cell lines (breast: MCF7; liver: HepG2) was evaluated by the MTT assay. H2O2-stressed HepG2 cells supplied with the S. circinata extracts exhibited significantly increased CAT and GSH activity as compared to unsupplied ones. The anti-inflammatory activity of the extracts was evaluated by real time-qPCR on IL-1, IL-6 and TNF-α expression. As a result, this research points out that S. circinata dichloromethane extract owns anti-inflammatory and anti-proliferative properties against MCF7 and HepG2 cells and activates CAT and GSH of the HepG2 cells' antioxidant enzyme system.

2.
Pharmaceutics ; 12(7)2020 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664676

RESUMO

Cyclodextrin polymers have high applicability in pharmaceutical formulations due to better biocompatibility, solubility enhancement, loading capacity and controlled drug release than their parent, cyclodextrins. The cytotoxicity and cell uptake of new cationic beta-cyclodextrin monomers and polymers were evaluated as suitable materials for nasal formulations and their protective effects on cells exposed to hydrogen peroxide were studied. PC12 and CACO-2 cells were selected as the neuronal- and epithelial-type cells, respectively, to mimic the structure of respiratory and olfactory epithelia of the nasal cavity. All cationic beta-cyclodextrin polymers tested showed dose- and time-dependent toxicity; nevertheless, at 5 µM concentration and 60 min of exposure, the quaternary-ammonium-beta-cyclodextrin soluble polymer could be recognized as nontoxic. Based on these results, a fluorescently labelled quaternary-ammonium-beta-cyclodextrin monomer and polymer were selected for uptake studies in CACO-2 cells. The monomeric and polymeric beta-cyclodextrins were internalized in the cytoplasm of CACO-2 cells; the cationic monomer showed higher permeability than the hydroxypropyl-beta-cyclodextrin, employed as comparison. Therefore, these cationic beta-cyclodextrins showed potential as excipients able to improve the nasal absorption of drugs. Furthermore, amino-beta-cyclodextrin and beta-cyclodextrin soluble polymers were able to reduce oxidative damage in PC12 and CACO-2 cells and thus could be studied as bioactive carriers or potential drugs for cell protection against oxidative stress.

3.
Tumour Biol ; 42(2): 1010428319901061, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32013807

RESUMO

Burkitt lymphoma is a very aggressive B-cell non-Hodgkin lymphoma. Although remarkable progress has been made in the therapeutic scenario for patients with Burkitt lymphoma, search and development of new effective anticancer agents to improve patient outcome and minimize toxicity has become an urgent issue. In this study, the antitumoral activity of Inula viscosa, a traditional herb obtained from plants collected on the Asinara Island, Italy, was evaluated in order to explore potential antineoplastic effects of its metabolites on Burkitt lymphoma. Raji human cell line was treated with increasing Inula viscosa extract concentration for cytotoxicity screening and subsequent establishment of cell cycle arrest and apoptosis. Moreover, gene expression profiles were performed to identify molecular mechanisms involved in the anticancer activities of this medical plant. The Inula viscosa extract exhibited powerful antiproliferative and cytotoxic activities on Raji cell line, showing a dose- and time-dependent decrease in cell viability, obtained by cell cycle arrest in the G2/M phase and an increase in cell apoptosis. The treatment with Inula viscosa caused downregulation of genes involved in cell cycle and proliferation (c-MYC, CCND1) and inhibition of cell apoptosis (BCL2, BCL2L1, BCL11A). The Inula viscosa extract causes strong anticancer effects on Burkitt lymphoma cell line. The molecular mechanisms underlying such antineoplastic activity are based on targeting and downregulation of genes involved in cell cycle and apoptosis. Our data suggest that Inula viscosa natural metabolites should be further exploited as potential antineoplastic agents against Burkitt lymphoma.


Assuntos
Linfoma de Burkitt/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Inula/química , Proteínas de Neoplasias/genética , Apoptose/efeitos dos fármacos , Linfoma de Burkitt/genética , Linfoma de Burkitt/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
4.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669626

RESUMO

Molecular biomarkers are very important in biology, biotechnology and even in medicine, but it is quite hard to convert biology-related signals into measurable data. For this purpose, amperometric biosensors have proven to be particularly suitable because of their specificity and sensitivity. The operation and shelf stability of the biosensor are quite important features, and storage procedures therefore play an important role in preserving the performance of the biosensors. In the present study two different designs for both glucose and lactate biosensor, differing only in regards to the containment net, represented by polyurethane or glutharaldehyde, were studied under different storage conditions (+4, -20 and -80 °C) and monitored over a period of 120 days, in order to evaluate the variations of kinetic parameters, as VMAX and KM, and LRS as the analytical parameter. Surprisingly, the storage at -80 °C yielded the best results because of an unexpected and, most of all, long-lasting increase of VMAX and LRS, denoting an interesting improvement in enzyme performances and stability over time. The present study aimed to also evaluate the impact of a short-period storage in dry ice on biosensor performances, in order to simulate a hypothetical preparation-conservation-shipment condition.


Assuntos
Técnicas Biossensoriais/métodos , Temperatura Baixa , Glucose/análise , Ácido Láctico/análise , Preservação Biológica , Gelo-Seco , Desenho de Equipamento , Cinética , Fatores de Tempo
5.
Phytomedicine ; 52: 23-31, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30599903

RESUMO

BACKGROUND: Genistein is a soy-derived isoflavone and phytoestrogen with antioxidant and neuroprotective activity. Genistein has intrinsically low oral bioavailability that affects its dose-response activities. PURPOSE: Nanotechnologies were used to obtain the delivery of genistein to the brain: lipid-based nanovesicles, transfersomes, loaded with the phytoestrogen were developed as potential therapeutic or preventive strategy against neurodegenerative diseases by intranasal administration. METHODS: Phosphatidylcholine from soybean and different edge activators were used to prepare transfersomes. The effect of selected nanovesicles on the oxidative damage was studied in PC12 cell line. RESULTS: Suitable nanovesicles as carrier of genistein were obtained; their composition affects deformability, drug permeation behavior and cytotoxicity. In particular, the formulation containing Span 80, GEN-TF2, showed efficiency of internalization into the cell and it was able to attenuate ROS formation and to reduce the amount of apoptotic cells generated by H2O2 treatment compared to genistein. CONCLUSION: GEN-TF2 was able to reduce the oxidative damage suggesting a possible antioxidant role of this drug delivery system. These obtained data confer to GEN-TF2 a potential antioxidant activity and then it could be used as adjuvant therapy in oxidative stress-related neurodegenerative diseases.


Assuntos
Adjuvantes Farmacêuticos/farmacologia , Portadores de Fármacos , Genisteína/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio/farmacologia , Nanoestruturas , Oxirredução , Células PC12 , Fitoestrógenos/farmacologia , Ratos
6.
Pharmaceutics ; 11(1)2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30597930

RESUMO

Genistein has been reported to have antioxidant and neuroprotective activity. Despite encouraging in vitro and in vivo results, several disadvantages such as poor water solubility, rapid metabolism, and low oral bioavailability limit the clinical application of genistein. The aim of this study was to design and characterize genistein-loaded chitosan nanoparticles for intranasal drug delivery, prepared by the ionic gelation technique by using sodium hexametaphosphate. Nanoparticles were characterized in vitro and their cytotoxicity was tested on PC12 cells. Genistein-loaded nanoparticles were prepared, and sodium hexametaphosphate was used as a valid alternative to well-known cross-linkers. Nanoparticle characteristics as well as their physical stability were affected by formulation composition and manufacturing. Small (mean diameters of 200⁻300 nm) and homogeneous nanoparticles were obtained and were able to improve genistein penetration through the nasal mucosa as compared to pure genistein. Nanoparticle dispersions showed a pH consistent with the nasal fluid and preserved PC12 cell vitality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...