Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732751

RESUMO

Cellulose is used widely in antimicrobial packaging due to its abundance in nature, biodegradability, renewability, non-toxicity, and low cost. However, how efficiently and rapidly it imparts high antimicrobial activity to cellulose-based packaging materials remains a challenge. In this work, Ag NPs were deposited on the surface of carboxymethyl cellulose/starch/N'N Methylenebisacrylamide film using ultrasonic radiation. Morphology and structure analysis of as-prepared films were conducted, and the antibacterial effects under different ultrasonic times and reductant contents were investigated. These results showed that Ag NPs were distributed uniformly on the film surface under an ultrasonic time of 45 min. The size of Ag NPs changes as the reducing agent content decreases. The composite film demonstrated a slightly better antibacterial effect against E. coli than against S. aureus. Therefore, this work can provide valuable insights for the research on antimicrobial packaging.

2.
Int J Biol Macromol ; 268(Pt 2): 131984, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692552

RESUMO

Biomass materials substituting for petroleum-based polymers occupy an important position in achieving sustainable development. Cellulose, a typical biomass material, stands out as the primary choice for producing eco-friendly packaging materials. However, it is still a challenge to efficiently utilize cellulose from waste biomass materials in practice. Herein, cellulose-based films were prepared by pretreating waste corn straw, separating straw husk, straw pith and straw leaf, and extracting cellulose through alkali and sodium chlorite treatment to improve its mechanical properties using the cross-linked polyvinyl alcohol (PVA) method in this work. The prepared composite films were characterized by Fourier transform infrared spectrometer (FTIR), X-ray diffraction instrument (XRD), Scanning electron microscopy (SEM), Thermogravimetric (TG) and mechanical properties. The results indicated that corn straw husk exhibited the highest cellulose content of 31.67 wt%, and obtained husk cellulose had the highest crystallinity of 52.5 %. Compared to corn straw, the crystallinity of husk cellulose, pith cellulose and leaf cellulose increased by 19.5 %, 16.4 % and 44.1 %, respectively. Husk cellulose/PVA composite films were the most thermally stable, with a maximum weight loss temperature of 346.8 °C. In addition, the husk cellulose/PVA composite film had the best tensile strength of 37 MPa. Meanwhile, the composite films had good UV shielding, low water vapor transmission rate and biodegradability. Therefore, this work provides a fine utilization route of waste corn straw, and as-prepared cellulose based films have potential application in eco-friendly packaging materials.


Assuntos
Celulose , Álcool de Polivinil , Zea mays , Zea mays/química , Álcool de Polivinil/química , Celulose/química , Resistência à Tração , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Termogravimetria
3.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674986

RESUMO

The recycling of plastic packaging wastes helps to alleviate the problems of white pollution and resource shortage. It is very necessary to develop high-value conversion technologies for plastic packaging wastes. To our knowledge, carbon materials with excellent properties have been widely used in energy storage, adsorption, water treatment, aerospace and functional packaging, and so on. Waste plastic packaging and biomass materials are excellent precursor materials of carbon materials due to their rich sources and high carbon content. Thus, the conversion from waste plastic packaging and biomass materials to carbon materials attracts much attention. However, closely related reviews are lacking up to now. In this work, the pyrolysis routes of the pyrolysis of plastic packaging wastes and biomass materials for conversion to high-value carbons and the influence factors were analyzed. Additionally, the applications of these obtained carbons were summarized. Furthermore, the limitations of the current pyrolysis technology are put forward and the research prospects are forecasted. Therefore, this review can provide a useful reference and guide for the research on the pyrolysis of plastic packaging wastes and biomass materials and the conversion to high-value carbon.

4.
Polymers (Basel) ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37688151

RESUMO

The surface of plant fibers was modified by silane coupling agents to prepare plant fiber/polylactic acid (PLA) composites, which can improve the dispersion, adhesion, and compatibility between the plant fibers and the PLA matrix. In this work, three silane coupling agents (KH550, KH560, and KH570) with different molecular structures were used to modify the surface of waste corrugated paper fibers (WFs), and dichloromethane was used as the solvent to prepare the WF/PLA composites. The effects of different silane coupling agents on the microstructure, mechanical properties, thermal decomposition, and crystallization properties of the composites were studied. The mechanical properties of the composites treated with 4 wt% KH560 were the best. Silane coupling agents can slightly improve the melting temperature of the composites, and WFs can promote the crystallization of PLA. The modification of WFs by silane coupling agents can increase the decomposition temperature of the WF/PLA composites. The content and type of silane coupling agent directly affected the mechanical properties of the WF/PLA composites. The interfacial compatibility between the WFs and PLA can be improved by using a silane coupling agent, which can further enhance the mechanical properties of WF/PLA composites. This provides a research basis for the further improvement of the performance of plant fiber/PLA composites.

5.
Molecules ; 28(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570727

RESUMO

As a kind of biomass resource, waste office paper can be used as a carbon precursor to prepare carbon materials. In this work, carbon microspheres with regular shape, uniform particle size and high carbon content were successfully prepared from waste office paper via a hydrothermal synthesis method with sulfuric acid as the catalyst. The effects of reaction temperature and sulfuric acid dosage on the morphology of the carbon microspheres were studied. The formation mechanism of the carbon microspheres was investigated by analyzing the structure and composition of the products. The results show that the hydrolysis of cellulose in waste paper under hydrothermal conditions was the key for the formation of carbon microspheres. The temperature of hydrothermal reaction and the use of sulfuric acid can affect the morphology of carbon microspheres. The carbon microspheres synthesized at 210 °C with 10 mL sulfuric acid have the best surface morphology, with uniform particle size and higher dispersion. Cyclic voltammetry and electrochemical impedance spectroscopy show that the carbon microspheres have good capacitance performance and can be used in capacitors. This study provides a low-cost precursor for carbon microspheres as well as a new method for the recycle of waste paper.

6.
Int J Biol Macromol ; 245: 125519, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37353127

RESUMO

Starch (SR)/carboxymethyl cellulose (CMC) based antimicrobial films have been widely applied in packaging field. As a high-effect antimicrobial agent, the surface charge of imidazolium salt plays an important effect on antimicrobial performances of starch/carboxymethyl cellulose. Here in, the surface charge of dodecyl imidazolium bromide salt was regulated via thiol-ene reaction. Furthermore, antibacterial films were prepared by mixing imidazolium salts with SR/CMC via solution casting method. Under the optimized ratio of CMC to SR, the antibacterial activity for as-prepared ternary polymer blend films was enhanced with the increasing of surface charge of imidazolium salt. The sample of ADSC-01 film with highest surface charge showed best antibacterial properties for E. coli and S. aureus with the inhibition zone of 3.20 cm and 3.00 cm, respectively. In addition, hydrophobic property exhibited similar positive correlation with the surface charge. Therefore, this work provides a new route to regulate the antibacterial activity of bio-based ternary polymer blend films in the packaging.


Assuntos
Anti-Infecciosos , Carboximetilcelulose Sódica , Carboximetilcelulose Sódica/química , Sais/farmacologia , Polímeros/farmacologia , Escherichia coli , Amido/farmacologia , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia
7.
Carbohydr Polym ; 314: 120928, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173009

RESUMO

Porous fibers as excellent carriers can be used to prepare photoluminescence materials. Herein, cellulose nanocrystals (CNCs) were derived from microcrystalline cellulose (MCC) by sulfuric acid hydrolysis. After CNCs were squeezed into a coagulating bath containing silicon precursors obtained by the hydrolysis of tetraethyl orthosilicate, porous cellulose fibers were constructed through self-assembly and then incorporated with graphene carbon quantum dots (GQDs) to prepare porous photoluminescence cellulose fibers. The silicon precursor amount, self-assembly time, and corrosion time were optimized. In addition, the morphology, structure and optical properties of the products were investigated. These results showed that as-prepared porous cellulose fibers with mesopores presented loose and porous mesh. Interestingly, the porous photoluminescence cellulose fibers exhibited blue fluorescence, and the maximum emission peak appeared at 430 nm under the excitation wavelength of 350 nm. Furthermore, the relative fluorescence intensity of the porous photoluminescence cellulose fibers was significantly enhanced compared with nonporous photoluminescence cellulose fibers. This work provided a new method to prepare environmentally and stably photoluminescence fibers, which had potential applications in anti-counterfeit packaging and smart packaging.

8.
Materials (Basel) ; 16(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37109815

RESUMO

Cr is used extensively in industry, so the number of Cr (VI) hazards is increasing. The effective control and removal of Cr (VI) from the environment are becoming an increasing research priority. In order to provide a more comprehensive description of the research progress of chromate adsorption materials, this paper summarizes the articles describing chromate adsorption in the past five years. It summarizes the adsorption principles, adsorbent types, and adsorption effects to provide methods and ideas to solve the chromate pollution problem further. After research, it is found that many adsorbents reduce adsorption when there is too much charge in the water. Besides, to ensure adsorption efficiency, there are problems with the formability of some materials, which impact recycling.

9.
Polymers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36771906

RESUMO

Perfluorooctanoic acid (PFOA) is a new type of organic pollutant in wastewater that is persistent, toxic, and accumulates in living organisms. The development of rapid and sensitive analytical methods to detect PFOA in environmental media is of great importance. Fluorescence detection has the advantages of high efficiency and low cost, in which fluorescent probes have excellent fluorescence properties, excellent bio-solubility, and remarkable photostability. It is necessary to review the fluorescence detection routes for PFOA. In addition, the up-conversion of fluorescent materials (UCNPs), as fluorescent materials to prepare fluorescent probes with, has significant advantages and also attracts the attention of researchers, however, reviews related to their application in detecting PFOA and comparing them with other routes are rare. Furthermore, there are many strategies to improve the performance of up-conversion fluorescent probes including SiO2 modification and amino modification. These strategies can enhance the detection effect of PFOA. Thus, this work reviews the types of fluorescence detection, the design, and synthesis of UCNPs, their recognition mechanism, properties, and their application progress. Moreover, the development trend and prospects of these detection probes are given.

10.
J Colloid Interface Sci ; 639: 160-170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804789

RESUMO

Biomass-carbon materials have excellent electromagnetic wave attenuation properties, which is one of the essential factors for developing ultra-thin matched-thickness, and high-performance microwave absorption materials. This study reports a two-step procedure consisting of carbonization and subsequent in-situ growth for preparing a wrinkle-like multilayer biomass-derived composites with magnetic Co particles and ZnO particles (CoZnO/C-X). The synergistic effect of a wrinkle-like multilayer structure and Co and ZnO particles, as well as the existence of many heterogeneous interfaces in the composites structure, and efficiently creates multiple scattering and reflections, which gives the composites the strong microwave absorption properties. The minimum reflection loss value (RLmin) of CoZnO/C-X reaches - 54.90 dB with a thickness of 1.8 mm, and the effective absorption bandwidth (lower than - 10 dB) is 7.2 GHz covering from 10.8 GHz to18.0 GHz with matching thickness of 2.0 mm. Furthermore, the reasonable dielectric/magnetic losses, optimized impedance matching and enhanced polarization loss play an indispensable role among improving microwave absorption performance. Thus, this result provides a good potential method for preparation of magnetic particle/metal oxide/biomass-derived carbon microwave absorbing structural materials.

11.
J Colloid Interface Sci ; 639: 68-77, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36804794

RESUMO

The design and preparation of heterogeneous structures of dielectric materials has been the mainstream direction for the construction of superior microwave absorption materials (MAMs). We report a facile and efficient procedure combination of hydrothermal process and subsequent heat treatment for successfully prepared bilayer core-shell structure self-assembled V2O3 microspheres (BCSV). The microstructure, defects, dielectric properties and microwave absorption (MA) properties of BCSV were systematically investigated, and the effect of bilayer core-shell structure on the MA properties was discussed. By varying the heat treatment temperature, it is feasible to regulate the thickness of V2O3 bilayer and its unique structure defects, hence enhancing the attenuation and multiple polarization loss of electromagnetic waves inside the microspheres. Self-assembled V2O3 microspheres with bilayer core-shell structure exhibit high-performance MA property. The reflection loss (RL) gets to - 67.12 dB at 11.69 GHz covering the whole X-band after heat treatment at 600 °C, and the broad effective absorption bandwidth is 5.49 GHz with a thickness of 2.20 mm. The conductivity loss, multiple polarization loss and dielectric loss are ascribed to the specific bilayer core-shell structure. Thus, our work provides a good perspective on how to create vanadium oxide-based MAMs with effective absorption and broad bandwidth.

12.
Waste Manag ; 155: 137-145, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370623

RESUMO

Polymers with excellent optical and mechanical performance fabricated from renewable resources, have been paid an increasing attention in recent years. Here, high-performing polyurethane elastomers with significant mechanical properties, crystallinity, excellent stretchability and good transparency are prepared by a synergistic molecular design in the soft and hard segments. Using the liquid glycolysis degradation product (LGOP) as a chain extender, polyurethane elastomer is synthesized from polyethylene terephthalate (PET) waste bottles. The results suggest that the degradation products from waste PET can be directly used as feedstock for preparing polyurethane elastomers with significant performance. The polyurethanes exhibited excellent optical transparency of near 90%, and can be stretched up to 670% without any treatment to return to original size. It is assumed that the symmetrical hard domain composed of aromatic rings and ester groups in LGOP creates sufficient chain fluidity for the dynamic exchange of hydrogen bonds and urethane. This paper has devoted to achieve a complete and mature system from waste PET to polyurethane products, to create a closed loop of waste PET plastic recycling and regeneration, and to realize the polyurethane industrial chain of raw material self-supply.


Assuntos
Elastômeros , Poliuretanos , Polietilenotereftalatos , Reciclagem , Plásticos , Ésteres
13.
Materials (Basel) ; 15(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36556818

RESUMO

The aluminum foam sandwich (AFS), which perfectly combines the excellent merits of an aluminum foam core and face sheet materials, has extensive and reliable applications in many fields, such as aerospace, military equipment, transportation, and so on. Adhesive bonding is one of the most widely used methods to produce AFS due to its general applicability, simple process, and low cost, however, the bonding interface is known as the weak link and may cause a serious accident. To overcome the shortcomings of a bonded AFS interface, short carbon fiber as a reinforcement phase was introduced to epoxy resin to reinforce the interface adhesion strength of AFS. Single lap shear tests and three-point bending tests were conducted to study the mechanical behavior of the reinforced interface and AFS, respectively. The failure mechanism was studied through a macro- and microanalysis. The result showed that after the reinforcement of carbon fiber, the tangential shear strength of the interface increased by 73.65%. The effective displacement of AFS prepared by the reinforced epoxy resin is 125.95% more than the AFS prepared by the unreinforced epoxy resin. The flexure behavior of the reinforced AFS can be compared with AFS made through a metallurgical method. Three categories of reinforcement mechanisms were discovered: (a) the pull off and pull mechanism: when the modified carbon fiber performed as the bridge, the bonding strength improved because of the pull off and pull out of fibers; (b) adhesion effect: the carbon fiber gathered in the hole edge resulted in epoxy resins being gathered in there too, which increased the effective bonding area of the interface; (c) mechanical self-locking effect: the carbon fiber enhanced the adhesive filling performance of aluminum foam holes, which improved the mechanical self-locking effect of the bonding interface.

14.
Molecules ; 27(22)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36432131

RESUMO

Conductive silver paste is a key material in the fields of printed circuits and printed electronic devices. However, the preparation of conductive silver paste with low-cost and volatile organic compounds (VOCs) is still a challenge. In this work, conductive silver pastes with excellent comprehensive performances were developed by using water-borne polyurethane (WPU) as the bonding phase and using the ternary mixture of Ag microflakes (Ag MFs), Ag nanowires (Ag NWs), and Ag nanoparticles (Ag NPs) as the conductive phase. WPU endowed conductive silver pastes with the adhesion along with releasing a few VOCs during the curing. Results showed that a small amount of Ag NPs or Ag NWs dramatically enhanced the electrical conductivity of silver paste paint film filled only with Ag MFs. The electrical resistivity for optimal ternary mixture conductive silver paste was 0.2 × 10-3 Ω∙cm, and the conductive phase was composed of 20.0 wt% Ag MFs, 7.5 wt% Ag NWs, and 2.5 wt% Ag NPs. Meanwhile, the adhesive strength and hardness of silver paste paint film were effectively improved by increasing the curing temperature. The optimal overall performance of the conductive silver pastes was achieved at the curing temperature of 160 °C. Therefore, this work can provide a new route for preparing conductive silver pastes with high performances.


Assuntos
Nanopartículas Metálicas , Nanofios , Compostos Orgânicos Voláteis , Prata , Condutividade Elétrica
15.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36365478

RESUMO

As an excellent semiconductor photocatalyst, zinc oxide is widely used in the field of photocatalysis and is regarded as one of the most reliable materials to solve environmental problems. However, because its band gap energy limits the absorption of visible light and reduces the efficiency of catalytic degradation, it needs to be doped with other substances or compounded with other substances and precious metal. This paper summarizes the research on this aspect at home and abroad in recent years, introduces the doping of transition metal ions by zinc oxide, the compounding of zinc oxide with precious metals or other semiconductors, and the prospect of further improving the catalytic efficiency of zno photocatalyst is also put forward.

16.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365563

RESUMO

In order to explore the methods of recycling waste paper, reduce environment pollution, and develop a circular economy, the application of waste corrugated paper to the strengthening of polylactic acid (PLA) was studied. Plant fiber from waste corrugated paper (WCPF) was used to prepare WCPF/PLA composite via co-extrusion. The WCPF was extracted from the waste corrugated paper by beating in a Valli beating machine and grinding in a disc grinder. KH-550 coupling agent was used to modify the surface of WCPF to improve the interface adhesive strength between the WCPF and PLA matrix. The effects of the contents of WCPF and KH-550 coupling agent on the mechanical properties, microstructure, crystallization properties, and thermostability of the WCPF/PLA composite were studied. The results show that the WCPF can be well separated from each other. The WCPF can be uniformly dispersed in the PLA matrix through a co-extrusion process. WCPF can increase the mechanical strength and deformation resistance ability of WCPF/PLA composite, and KH-550 coupling agent can further improve that of the WCPF/PLA composite. This study is of obvious significance to the recycling of waste paper and the development of a circular economy.

17.
Carbohydr Polym ; 298: 120098, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241279

RESUMO

As a green solvent, alkylimidazolium salt has attracted much attention due to high antibacterial activity and excellent biocompatibility. In this work, 1-allyl-3-alkylimidazolium bromide ionic liquids (AIMB) were synthesized in a closed system. Using carboxymethyl cellulose (CMC) and starch (SR) as carriers, 1-allyl-3-dodecylimidazolium bromide ionic liquid (AIMC12)/CMC/SR (AIMCS) films were prepared via solution casting method. The AIMC12 exhibited the highest antibacterial activity. Under the optimized ratio of CMC to SR, the AIMCS-1-1 film showed effective antibacterial properties for E. coli and S. aureus with the inhibition zone of 3.50 cm and 3.02 cm, respectively. In addition, the tensile strength and elongation at break of AIMCS-1-1 reached to 4.5 MPa and 111.6 %, and its Young's modulus was 1.4 GPa. Therefore, as-prepared AIMB will be expected to replace traditional antibacterial agents in antibacterial applications, and as-prepared AIMCS films as the green packaging materials have potential application in antibacterial packaging.


Assuntos
Celulose , Líquidos Iônicos , Antibacterianos/química , Antibacterianos/farmacologia , Brometos/farmacologia , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Celulose/química , Celulose/farmacologia , Escherichia coli , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Permeabilidade , Staphylococcus aureus , Amido/química
18.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080634

RESUMO

To improve the recycle value of waste paper and promote circular economic development, waste corrugated paper fiber (WCPF) was used as a reinforcing agent to prepare waste corrugated paper fiber/polylactic acid (WCPF/PLA) composites via dichloromethane solvent which can be reused. The WCPF in the waste corrugated paper is extracted by beating in a Valli beating machine for different time lengths and grinding in a disc grinder. The effects of beating time and the content of WCPF on the microstructure, mechanical properties, thermal decomposition process, and crystallization properties of the WCPF/PLA composite were studied. The result shows that the WCPF can be well separated from each other and can be evenly dispersed in the PLA matrix. When 25 wt% WCPF which was beat for 30 min was used, the composite has the greatest improvement in tensile property. This study provides a new process for the recycling of waste paper in the application of polymer reinforcement. The research on waste paper fiber and degradable polymer composite is of great significance for reducing environmental pollutants and developing circular economy.

19.
Polymers (Basel) ; 14(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35956624

RESUMO

To improve the performance and application value of recycled plastics, filling modification has been widely used in waste plastic reinforcement. In this study, recycled polyethylene (RPE) was reinforced via extrusion blending using waste polyester fiber (WPF) from a waste silk wadding quilt as a reinforcer. The effects of the amount of WPF on the mechanical properties, the thermal stability of RPE and the microstructure of the RPE/WPF composite were studied. The result shows that extrusion blending can evenly disperse WPF in RPE matrix and that WPF can clearly improve the tensile strength, flexural modulus, storage modulus and thermal stability of RPE. The tensile strength and flexural modulus almost achieved the maximum when the addition of WPF was 20 wt%. The storage modulus under this condition is also higher than that of other samples. This study provides a cheap and effective reinforcement method for waste plastics as well as a new idea for the reuse of WPF, which is of great significance to the reuse of waste and environmental protection. However, how to enhance the interface adhesion between WPF and RPE to further improve the enhancement effect needs further research.

20.
ACS Appl Mater Interfaces ; 14(31): 35940-35948, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914230

RESUMO

Rare earth Tb3+ doped (K0.465Na0.465Li0.07)(Nb0.93Bi0.07)O3 (KNNLB-x%Tb) lead-free transparent ferroelectric ceramics were designed and prepared. The effects of Tb3+ on phase structure, microstructure, optical transmittance, photoluminescence, and photochromic behaviors were studied. Although two ferroelectric phases coexist, the optical transmittance can reach the high value of 74% in the visible light region because of the fine grains, dense ceramic microstructure, large optical energy band gap, and relatively high symmetry of coexisting ferroelectric phases. In addition, Tb3+ works as a luminescent center, and the reversible photochromic modulation is achieved by alternate stimulation of illumination and heat treatment. Meanwhile, the luminescence contrast can be improved under in situ electric field stimulation due to the easy change of lattice symmetry in coexisting ferroelectric phases. The generation of color centers after illumination and the local crystal field around the luminescent center caused by in situ electric field contributes to above phenomena. These ceramics exhibit the great potential in optical data storage and anticounterfeiting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...