Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(4): e2306119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036422

RESUMO

Tunable radar stealth structures are critical components for future military equipment because of their potential to further enhance the design space and performance. Some previous investigations have utilized simple origami structures as the basic adjusting components but failed to achieve the desired broadband microwave absorbing characteristic. Herein, a novel double-broadband switchable microwave absorbing grid structure has been developed with the actuators of inflatable Kresling origami structures. Geometric constraints are derived to endow a bistable feature with this origami configuration, and the stable states are switched by adjusting the internal pressure. An ultra-broadband microwave absorbing structure is proposed with a couple of complementary microwave stealth bands, and optimized by a particle swarm optimization algorithm. The superior electromagnetic performance results from the mode switch activating different absorbing components at corresponding frequencies. A digital adjusting strategy is applied, which effectively achieves a continuously adjusting effect. Further investigations show that the proposed structure possesses superior robustness. In addition, minimal interactions are found between adjacent grid units, and the electromagnetic performance is mainly related to the duty ratio of the units in different states. They have enhanced the microwave absorbing performance of grid structures through a tunable design, a provided a feasible paradigm for other tunable absorbers.

2.
Proc Natl Acad Sci U S A ; 120(28): e2301780120, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399420

RESUMO

Nearly half of the elements in the periodic table are extracted, refined, or plated using electrodeposition in high-temperature melts. However, operando observations and tuning of the electrodeposition process during realistic electrolysis operations are extremely difficult due to severe reaction conditions and complicated electrolytic cell, which makes the improvement of the process very blind and inefficient. Here, we developed a multipurpose operando high-temperature electrochemical instrument that combines operando Raman microspectroscopy analysis, optical microscopy imaging, and a tunable magnetic field. Subsequently, the electrodeposition of Ti-which is a typical polyvalent metal and generally shows a very complex electrode process-was used to verify the stability of the instrument. The complex multistep cathodic process of Ti in the molten salt at 823 K was systematically analyzed by a multidimensional operando analysis strategy involving multiple experimental studies, theoretical calculations, etc. The regulatory effect and its corresponding scale-span mechanism of the magnetic field on the electrodeposition process of Ti were also elucidated, which would be inaccessible with existing experimental techniques and is significant for the real-time and rational optimization of the process. Overall, this work established a powerful and universal methodology for in-depth analysis of high-temperature electrochemistry.

3.
Polymers (Basel) ; 15(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37514422

RESUMO

Rubber composites are hyperelastic materials with obvious stress-softening effects during the cyclic loading-unloading process. In previous studies, it is hard to obtain the stress responses of rubber composites at arbitrary loading-unloading orders directly. In this paper, a hyper-pseudoelastic model is developed to characterize the cyclic stress-softening effect of rubber composites with a fixed stretch amplitude at arbitrary loading-unloading order. The theoretical relationship between strain energy function and cyclic loading-unloading order is correlated by the hyper-pseudoelastic model directly. Initially, the basic laws of the cyclic stress-softening effect of rubber composites are revealed based on the cyclic loading-unloading experiments. Then, a theoretical relationship between the strain energy evolution function and loading-unloading order, as well as the pseudoelastic theory, is developed. Additionally, the basic constraints that the strain energy evolution function must satisfy in the presence or absence of residual deformation effect are derived. Finally, the calibration process of material parameters in the hyper-pseudoelastic model is also presented. The validity of the hyper-pseudoelastic model is demonstrated via the comparisons to experimental data of rubber composites with different filler contents. This paper presents a theoretical model for characterizing the stress-softening effect of rubber composites during the cyclic loading-unloading process. The proposed theoretical model can accurately predict the evolution of the mechanical behavior of rubber composites with the number of loading-unloading cycles, which provides scientific guidance for predicting the durability properties and analyzing the fatigue performance of rubber composites.

4.
Adv Mater ; 35(36): e2302320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37358059

RESUMO

Deterministic control of ferroelectric domain is critical in the ferroelectric functional electronics. Ferroelectric polarization can be manipulated mechanically with a nano-tip through flexoelectricity. However, it usually occurs in a very localized area in ultrathin films, with possible permanent surface damage caused by a large tip-force. Here it is demonstrated that the deliberate engineering of transverse flexoelectricity offers a powerful tool for improving the mechanical domain switching. Sizable-area domain switching under an ultralow tip-force can be realized in suspended van der Waals ferroelectrics with the surface intact, due to the enhanced transverse flexoelectric field. The film thickness range for domain switching in suspended ferroelectrics is significantly improved by an order of magnitude to hundreds of nanometers, being far beyond the limited range of the substrate-supported ones. The experimental results and phase-field simulations further reveal the crucial role of the transverse flexoelectricity in the domain manipulation. This large-scale mechanical manipulation of ferroelectric domain provides opportunities for the flexoelectricity-based domain controls in emerging low-dimensional ferroelectrics and related devices.

5.
Small ; 19(29): e2206391, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37026433

RESUMO

Micro/nano-scaled mechanical metamaterials have attracted extensive attention in various fields attributed to their superior properties benefiting from their rationally designed micro/nano-structures. As one of the most advanced technologies in the 21st century, additive manufacturing (3D printing) opens an easier and faster path for fabricating micro/nano-scaled mechanical metamaterials with complex structures. Here, the size effect of metamaterials at micro/nano scales is introduced first. Then, the additive manufacturing technologies to fabricate mechanical metamaterials at micro/nano scales are introduced. The latest research progress on micro/nano-scaled mechanical metamaterials is also reviewed according to the type of materials. In addition, the structural and functional applications of micro/nano-scaled mechanical metamaterials are further summarized. Finally, the challenges, including advanced 3D printing technologies, novel material development, and innovative structural design, for micro/nano-scaled mechanical metamaterials are discussed, and future perspectives are provided. The review aims to provide insight into the research and development of 3D-printed micro/nano-scaled mechanical metamaterials.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36283006

RESUMO

Natural materials overwhelmingly shrink laterally under stretching and expand upon heating. Through incorporating Poisson's ratio and coefficient of thermal expansion (PR and CTE) in unusual geminations, such as positive PR and negative CTE, negative PR and positive CTE, and even zero PR and zero CTE, bifunctional metamaterials would generate attractive shape control capacity. However, reported bifunctional metamaterials are only theoretically constructed by simple skeletal ribs, and the magnitudes of the bifunctions are still in quite narrow ranges. Here, we propose a methodology for generating novel bifunctional metamaterials consisting of engineering polymers. From concept to refinement, the topology and shape optimization are integrated for programmatically designing bifunctional metamaterials in various germinations of the PR and CTE. The underlying deformation mechanisms of the obtained bifunctions are distinctly revealed. All of the designs with complex architectures and material layouts are fabricated using the multimaterial additive manufacturing, and their effective properties are experimentally characterized. Good agreements of the design, simulation, and experiments are achieved. Especially, the accessible range of the bifunction, namely, PR and CTE, is remarkably enlarged nearly 4 times. These developed approaches open an avenue to explore the bifunctional metamaterials, which are the basis of myriad mechanical- and temperature-sensitive devices, e.g., morphing structures and high-precision components of the sensors/actuators in aerospace and electronical domains.

7.
Nat Commun ; 13(1): 5116, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045121

RESUMO

Recent realizations of ultrathin freestanding perovskite oxides offer a unique platform to probe novel properties in two-dimensional oxides. Here, we observe a giant flexoelectric response in freestanding BiFeO3 and SrTiO3 in their bent state arising from strain gradients up to 3.5 × 107 m-1, suggesting a promising approach for realizing ultra-large polarizations. Additionally, a substantial change in membrane thickness is discovered in bent freestanding BiFeO3, which implies an unusual bending-expansion/shrinkage effect in the ferroelectric membrane that has never been seen before in crystalline materials. Our theoretical model reveals that this unprecedented flexural deformation within the membrane is attributable to a flexoelectricity-piezoelectricity interplay. The finding unveils intriguing nanoscale electromechanical properties and provides guidance for their practical applications in flexible nanoelectromechanical systems.

8.
Sci Robot ; 7(66): eabn0602, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35613299

RESUMO

Robots with submillimeter dimensions are of interest for applications that range from tools for minimally invasive surgical procedures in clinical medicine to vehicles for manipulating cells/tissues in biology research. The limited classes of structures and materials that can be used in such robots, however, create challenges in achieving desired performance parameters and modes of operation. Here, we introduce approaches in manufacturing and actuation that address these constraints to enable untethered, terrestrial robots with complex, three-dimensional (3D) geometries and heterogeneous material construction. The manufacturing procedure exploits controlled mechanical buckling to create 3D multimaterial structures in layouts that range from arrays of filaments and origami constructs to biomimetic configurations and others. A balance of forces associated with a one-way shape memory alloy and the elastic resilience of an encapsulating shell provides the basis for reversible deformations of these structures. Modes of locomotion and manipulation span from bending, twisting, and expansion upon global heating to linear/curvilinear crawling, walking, turning, and jumping upon laser-induced local thermal actuation. Photonic structures such as retroreflectors and colorimetric sensing materials support simple forms of wireless monitoring and localization. These collective advances in materials, manufacturing, actuation, and sensing add to a growing body of capabilities in this emerging field of technology.


Assuntos
Robótica , Materiais Inteligentes , Biomimética , Locomoção , Caminhada
9.
Biomater Sci ; 10(13): 3585-3596, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35640236

RESUMO

Nature-inspired flexible and multifunctional hydrogels are ideal materials for tissue repair. High-strength, wear-resistant, antibacterial and conductive hydrogels can potentially be applied in skin healing. However, their use is often hindered by problems including poor mechanical properties and conductivity. Herein, high-strength and conductivity and antibacterial polyvinyl alcohol (PVA) hydrogels with Ti3C2Tx (MXene) and polyaniline (PANI) have been developed to enhance skin wound healing. MXene strengthens the hydrogen bonds between PVA molecules and provides antibacterial ability lighted by near-infrared (NIR). PANI acts as an electric conductor and forms chemical bonds via polymerization with PVA to further enhance the mechanical properties of hydrogels. The PVA/MXene/PANI (PMP) hydrogels exhibit excellent mechanical properties (with a tensile strength of 4.1 MPa and a fracture energy of 130 kJ m-2), high electrical conductivity (0.22 S m-1) and antibacterial ability. The hydrogels significantly inhibit bacterial activity in vitro and vivo. Meanwhile, the hydrogels promote proliferation and enhance the migration of cells by electrical stimulation (ES). In addition, PMP hydrogels obviously accelerate skin wound healing by promoting angiogenesis and collagen deposition. Therefore, PMP multifunctional hydrogels are a prospective wearproof material for wound-healing dressings.


Assuntos
Hidrogéis , Álcool de Polivinil , Compostos de Anilina , Antibacterianos/química , Antibacterianos/farmacologia , Condutividade Elétrica , Hidrogéis/química , Hidrogéis/farmacologia , Álcool de Polivinil/química , Estudos Prospectivos , Cicatrização
10.
Angew Chem Int Ed Engl ; 61(24): e202202696, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35384209

RESUMO

Aluminum-sulfur (Al-S) batteries of ultrahigh energy-to-price ratios are a promising energy storage technology, while they suffer from a large voltage gap and short lifespan. Herein, we propose an electrocatalyst-boosting quasi-solid-state Al-S battery, which involves a sulfur-anchored cobalt/nitrogen co-doped graphene (S@CoNG) positive electrode and an ionic-liquid-impregnated metal-organic framework (IL@MOF) electrolyte. The Co-N4 sites in CoNG continuously catalyze the breaking of Al-Cl and S-S bonds and accelerate the sulfur conversion, endowing the Al-S battery with a shortened voltage gap of 0.43 V and a high discharge voltage plateau of 0.9 V. In the quasi-solid-state IL@MOF electrolytes, the shuttle effect of polysulfides has been inhibited, which stabilizes the reversible sulfur reaction, enabling the Al-S battery to deliver 820 mAh g-1 specific capacity and 78 % capacity retention after 300 cycles. This finding offers novel insights to design Al-S batteries for stable energy storage.

11.
Rev Sci Instrum ; 93(4): 045102, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489917

RESUMO

Premature failure of thermal barrier coatings (TBCs) under a temperature gradient is an overriding concern in many applications, and their mechanical parameters are essential to failure analysis. In this study, an in situ micro-indentation apparatus, including a heating module, cooling module, and micro-indentation module, was developed to study the mechanical parameters of TBCs with a temperature gradient. The upper surface of the TBC was heated by radiation to simulate high-temperature service conditions, and the bottom surface was gas-cooled. Different temperature gradients are obtained by changing the velocity of the cooling gas. The temperatures through the thickness of the TBCs were analyzed by numerical simulations and experiments. During exposure to the temperature gradient, micro-indentation tests of the TBC samples were conducted to obtain their mechanical parameters. In situ micro-indentation tests at different cooling gas flow rates (0, 20, and 40 l/min) were performed on the TBCs. The elastic modulus and stress evolution of the TBCs were extracted by analyzing the load-displacement curves at different gas velocities. The elastic modulus remains almost constant with increasing velocity while the stress difference increases.

12.
Sci Adv ; 8(6): eabm5678, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138887

RESUMO

High-temperature electrochemistry is widely used in many fields. However, real-time observations and an in-depth understanding of the inside evolution of this system from an experimental perspective remain limited because of harsh reaction conditions and multiphysics fields. Here, we tackled this challenge with a high-temperature electrolysis facility developed in-house. This facility permits in situ x-ray computer microtomography (µ-CT) for nondestructive and quantitative three-dimensional (3D) imaging. In an electrorefining system, the µ-CT probed the dynamic evolution of 3D morphology and components of electrodes (4D). Subsequently, this 4D process was visually presented via reconstructed images. The results monitor the efficiency of the process, explore the dynamic mechanisms, and even offer real-time optimization. This 4D analysis platform is notable for in-depth combinations of traditional electrochemistry with digital twin technologies owing to its multiscale visualization and high efficiency of data extraction.

13.
Adv Sci (Weinh) ; 9(9): e2105510, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35083883

RESUMO

Manganese dioxide (MnO2 ) is considered as a strong candidate in the field of new-generation electronic equipment. Herein, Co-MnO2 has excellent electrochemical properties in tests as the cathode electrode of sodium-ion batteries and potassium-ion batteries. The rate performance remains at 50.2 mAh g-1 at 200 mA g-1 for sodium-ion batteries. X-ray diffraction (XRD) is utilized to evaluate the crystal structure transition from Co0.2 -MnO2 to NaMnO2 with discharge to 1 V, proving that Co-doping does indeed facilitate the acceleration of ion transport and support layer spacing to stabilize the structure of MnO2 . Subsequently, highly conductive (0.0848 S cm-1 ) gel-type supercapacitors are prepared by combining Co0.2 -MnO2 , potassium hydroxide (KOH), and poly(vinyl alcohol) (PVA) together. Co0.2 -MnO2 provides capacitive behavior and strengthens the hydrogen bonds between molecules. KOH acts as an ion crosslinker to enhance hydrogen bond and as electrolyte to transport ions. 5 wt% Co0.2 -MnO2 @KOH/PVA has superb mechanical endurance, appreciable electrical conductivity, and ideal capacitive behavior. The quasi-solid-state supercapacitor demonstrates stabilized longevity (86.5% at 0.2 mA cm-3 after 500 cycles), which can greatly promote the integration of flexible energy storage fabric devices.

14.
Adv Sci (Weinh) ; 9(1): e2102662, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716676

RESUMO

Active mechanical metamaterials (AMMs) (or smart mechanical metamaterials) that combine the configurations of mechanical metamaterials and the active control of stimuli-responsive materials have been widely investigated in recent decades. The elaborate artificial microstructures of mechanical metamaterials and the stimulus response characteristics of smart materials both contribute to AMMs, making them achieve excellent properties beyond the conventional metamaterials. The micro and macro structures of the AMMs are designed based on structural construction principles such as, phase transition, strain mismatch, and mechanical instability. Considering the controllability and efficiency of the stimuli-responsive materials, physical fields such as, the temperature, chemicals, light, electric current, magnetic field, and pressure have been adopted as the external stimuli in practice. In this paper, the frontier works and the latest progress in AMMs from the aspects of the mechanics and materials are reviewed. The functions and engineering applications of the AMMs are also discussed. Finally, existing issues and future perspectives in this field are briefly described. This review is expected to provide the basis and inspiration for the follow-up research on AMMs.

15.
Natl Sci Rev ; 9(12): nwac030, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36726640

RESUMO

Metasurfaces, the ultra-thin media with extraordinary wavefront modulation ability, have shown great promise for many potential applications. However, most of the existing metasurfaces are limited by narrow-band and strong dispersive modulation, which complicates their real-world applications and, therefore require strict customized dispersion. To address this issue, we report a general methodology for generating ultra-broadband achromatic metasurfaces with prescribed ultra-broadband achromatic properties in a bottom-up inverse-design paradigm. We demonstrate three ultra-broadband functionalities, including acoustic beam deflection, focusing and levitation, with relative bandwidths of 93.3%, 120% and 118.9%, respectively. In addition, we reveal a relationship between broadband achromatic functionality and element dispersion. All metasurface elements have anisotropic and asymmetric geometries with multiple scatterers and local cavities that synthetically support internal resonances, bi-anisotropy and multiple scattering for ultra-broadband customized dispersion. Our study opens new horizons for ultra-broadband highly efficient achromatic functional devices, with promising extension to optical and elastic metamaterials.

16.
Research (Wash D C) ; 2022: 9828757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38645680

RESUMO

Dynamic color display can be realized by tunable optical metasurfaces based on the compositional or structural control. However, it is still a challenge to realize the efficient modulation by a single-field method. Here, we report a novel compositional and mechanical dual-altered rechargeable metasurface for reversible and broadband optical reconfiguration in both visible and near-infrared wavelength regions. By employing a simple fabrication and integration strategy, the continuous optical reconfiguration is manipulated through an electro-chemo-mechanical coupled process in a lithium ion battery, where lithiation and delithiation processes occur dynamically under a low electric voltage (≤1.5 V). By controlling the phase transformation from Si to Li xSi, both structural morphology and optical scattering could be rapidly and dramatically tailored within 30 s, exhibiting high-contrast colorization and decolorization in a large-area nanofilm and showing long cyclic stability. Significant wide-angle reconfiguration of high-resolution structural colors in bowtie metasurfaces is demonstrated from anomalous reflection. The results provide a multifield mechanism for reconfigurable photonic devices, and the new platform can be introduced to the multidimensional information encryption and storage.

17.
Adv Sci (Weinh) ; 8(24): e2101373, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708941

RESUMO

Electrodeposition is a fundamental technology in modern society and has been widely used in metal plating and extraction, etc. However, extreme reaction conditions, including wide operation temperature ranges and corrosive media (molten salt/oxide systems as a particular example), inhibit direct in situ observation of the electrodeposition process. To visualize the electrode kinetics in such "black box," X-ray tomography is employed to monitor the electrochemical processes and three-dimensional (3D) evolution of morphology. Benefiting from the excellent penetration of X-ray, a non-destructive and non-contact in situ four-dimensional (4D) visualization of Ti deposition is realized. Real-time 3D reconstructed images reveal that the counterintuitive nucleation and growth process of a mesoscale Ti dendrite at both solid and liquid cathodes. According to 3D morphology evolution, unusual mechanism based on synergetic effect of the diffusion of metallic Ti and local field enhancement is achieved utilizing a simulation method based on a finite element method. This approach allows for timely and accurately regulating the electrodeposition process upon in situ monitored parameters. More importantly, the 4D technique upon operando X-ray tomography and numerical simulation can be easily applied to other electrodeposition systems, which will help deeply understand the internal kinetics and the precise optimization of the electrodeposition conditions.

18.
Adv Mater ; 33(45): e2106175, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561930

RESUMO

Liquid crystal elastomers (LCEs) are a class of soft active materials of increasing interest, because of their excellent actuation and optical performances. While LCEs show biomimetic mechanical properties (e.g., elastic modulus and strength) that can be matched with those of soft biological tissues, their biointegrated applications have been rarely explored, in part, due to their high actuation temperatures (typically above 60 °C) and low biaxial actuation performances (e.g., actuation strain typically below 10%). Here, unique mechanics-guided designs and fabrication schemes of LCE metamaterials are developed that allow access to unprecedented biaxial actuation strain (-53%) and biaxial coefficient of thermal expansion (-33 125 ppm K-1 ), significantly surpassing those (e.g., -20% and -5950 ppm K-1 ) reported previously. A low-temperature synthesis method with use of optimized composition ratios enables LCE metamaterials to offer reasonably high actuation stresses/strains at a substantially reduced actuation temperature (46 °C). Such biocompatible LCE metamaterials are integrated with medical dressing to develop a breathable, shrinkable, hemostatic patch as a means of noninvasive treatment. In vivo animal experiments of skin repair with both round and cross-shaped wounds demonstrate advantages of the hemostatic patch over conventional strategies (e.g., medical dressing and suturing) in accelerating skin regeneration, while avoiding scar and keloid generation.


Assuntos
Materiais Biocompatíveis/química , Elastômeros/química , Cristais Líquidos/química , Regeneração , Pele/patologia , Animais , Bandagens , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Regeneração/efeitos dos fármacos , Temperatura
19.
Nano Lett ; 21(12): 5369-5376, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34125559

RESUMO

Electrochemical sensors are critical to artificial intelligence by virtue of capability of mimicking human skin to report sensing signals. But their practical applications are restricted by low sensitivity and limited cycling stability, which result from piezoionic mechanism with insufficient sensing response. Here, we report a highly sensitive ultrastable sensor based on proton-coupled electron transfer, which is different from piezoionic mechanism. The sensor gives a high sensing signal output of 117 mV, which is 16 times higher than that of counterpart device (7 mV). It delivers excellent working stability with performance retention as high as 99.13% over 10 000 bending cycles in air, exceeding that of the best-known sensors reported previously. The flexible sensor displays high sensitivity in detecting real-time signals of human activities with large and subtle deformations, including wrist bending, moving speed, pulse wave and voice vibration. Smart functions, such as braille language and handwriting recognitions, are demonstrated for artificial intelligence.


Assuntos
Inteligência Artificial , Prótons , Elétrons , Humanos
20.
Rev Sci Instrum ; 92(3): 033704, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819997

RESUMO

An elevated-temperature in situ microtomography apparatus that can measure internal damage parameters under tensile loads at high temperatures up to 1000 °C is developed using a laboratory x-ray source. The maximum resolution of the apparatus can reach 3 µm by a reasonable design. A high-temperature environment is accomplished by means of a heating chamber based on a radiation technique using four halogen lamps with ellipsoidal reflectors. To obtain high resolution, the chamber is much smaller in the direction of the x-ray beam than in the other two directions. Two thin aluminum windows are chosen as the chamber walls perpendicular to and intersecting the x-ray beam. A material testing machine equipped with two synchronous rotating motors is specially designed for mechanical loading and 360° rotation of the specimen, and customized grips are developed to conduct tensile tests. A microfocus x-ray source and a high-resolution detector are used to produce and detect X rays, and the distances among the x-ray source, specimen, and high-resolution detector can be adjusted to obtain different resolutions. To show the main functions and usability of the apparatus, carbon-fiber-reinforced silicon-carbide matrix specimens are subjected to in situ x-ray microtomography tensile tests at 800 °C and 1000 °C, and the crack propagation behavior under thermomechanical coupling loads is studied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...