Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Gu Shang ; 37(4): 358-62, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38664205

RESUMO

OBJECTIVE: To investigate the clinical efficacy of body-surface guide plates for lateral segmental positioning in the thoracolumbar spine. METHODS: From March 2018 to March 2021, 768 gerontal patientss underwent percutaneous vertebroplasty with balloon dilatation due to thoracolumbar compression fracturess, 356 males and 412 females. aged from 64 to 92 years old with an average of (77.9±13.5) years old. All patients were treated in hospital within 1 week after injury. All patients underwent preoperative localization, and were divided into localization plate group and locator group according to different localization methods. There were 390 patients in the localization plate group, 180 males and 210 females, aged from 64 to 92 years old, with an average age of (78.4±14.3) years old. There were 378 patients in the locator group, 176 males and 202 females, aged from 64 to 90 years old, with an average age of (77.5±13.4) years old. After preliminary positioning with the above two methods, skin markers were made, cloth was routinely disinfected, and the spinal lateral position was fluoroscopically examined after the fine needle was inserted into the marked point and the vertical body at the near tail end. The accuracy of the original positioning method was evaluated. The number of times, time and accuracy of positioning of the two groups of patients were compared and analyzed. RESULTS: The specific data of patient positioning in the two groups were collected for statistical analysis. The number of times of fluoroscopy in the positioning plate group and the locator group was(3.3±0.5) times and (5.0±1.2) times, and the positioning time was (60.4±9.4) s and (105.0±30.9) s, respectively. The accuracy of fluoroscopy was 97.5% (380/390) and 85.7% (324/378), respectively, with statistical significance (P<0.05). CONCLUSION: The lateral segmental positioning plate of the body surface spine has the advantages of simple operation, accurate positioning, and reducing X-ray radiation for patients, which is worthy of clinical application.


Assuntos
Vértebras Lombares , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Vértebras Lombares/cirurgia , Placas Ósseas , Vértebras Torácicas/cirurgia , Vertebroplastia/métodos , Fraturas da Coluna Vertebral/cirurgia , Posicionamento do Paciente/métodos , Fraturas por Compressão/cirurgia
2.
Huan Jing Ke Xue ; 42(6): 2917-2927, 2021 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-34032091

RESUMO

The treatment of cadmium-containing wastewater is of great significance for the emission control of the heavy metal cadmium. Here, a superparamagnetic nano-Fe3O4@SiO2 functionalized material (MFS) was prepared via a co-precipitation method, and the adsorption thermodynamic and kinetic characteristics of Cd2+ were studied by isothermal adsorption tests and kinetic experiments. The adsorption process and mechanism of MFS with respect to Cd2+ were also studied using BET, XRD, and SEM. The Langmuir equation well described the isothermal adsorption characteristics of MFS, and the maximum adsorption capacity was 69.49 mg·g-1. The standard free energy (ΔG), enthalpy (ΔH), and entropy changes (ΔS) showed that the adsorption reaction was a spontaneous, endothermic, and entropic process. The optimal initial pH of the adsorption reaction was 7. The four interfering ions (Mg2+, SO42-, Ca2+, and NO3-) in the solution had a certain inhibitory effect on the adsorption reaction. The pseudo-second-order kinetic model showed that the adsorption process of Cd2+ was divided into two stages, namely a rapid external diffusion stage and a slow internal diffusion stage. The removal rate of Cd2+ was still>73% after using the MFS three times. The BET, XRD, FTIR, and VSM analyses showed that SiO2 was successfully modified on the Fe3O4 surface. MFS is mainly spherical in structure with an average particle size of 38.7 nm and has a saturated magnetic intensity of 85.38 emu·g-1. The XRD, EDS, and XPS analyses revealed that Cd2+ was successfully adsorbed by the material, and the main mechanism was the coordination reaction between Cd2+ and -OH on the surface of the material.

3.
Huan Jing Ke Xue ; 42(3): 1523-1534, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742950

RESUMO

Using Fe3O4 and hydroxyapatite as raw materials, superparamagnetic nanometer-sized Fe3O4-phosphate functionalized materials (MFH) were prepared. Soil was subsequently magnetically repaired by adding MFH to cadmium-contaminated paddy field soil. Two kinds of rice with high (Yuzhenxiang) and low (Xiangwanxian-13) cadmium enrichment were selected for conduct pot experiments to study the effect of MFH magnetic separation on soil microorganisms and enzymes, and explore the possibility of application in the remediation of cadmium-polluted farmland. The results showed that MFH application improved the soil remediation effect, with significantly reduced total Cd (38.9%) and available Cd (27.3%) contents. In addition, the Cd content of the two kinds of rice grain was significantly reduced. After MFH magnetic separation, soil microbial community diversity and richness were decreased during the jointing, heading, and maturing stages of the two rice varieties. Treatment of cultivated Yuzhenxiang rice with high concentrations of Cd significantly increased the abundance of dominant Firmicute bacteria in the rice field during the jointing and heading stages. With the use of MFH in the magnetic separation, urease, catalase, and soil peroxidase activity were improved during the jointing, heading, and maturing stages of the two rice soils. The POD enzyme activity in the soil planted with Yuzhenxiang was slightly higher than that planted with Xiangwanxian-13, while urease activity showed the opposite trend.


Assuntos
Nanoestruturas , Oryza , Poluentes do Solo , Cádmio/análise , Nanopartículas Magnéticas de Óxido de Ferro , Solo , Poluentes do Solo/análise
4.
Huan Jing Ke Xue ; 40(6): 2840-2846, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854678

RESUMO

Biochar, pyrolyzed from agricultural biomass wastes, has been widely used as an improver in wastewater treatment to regulate the oxygen distributions and microbial communities because of its extended surface area and porous structure. In addition, biochar has been shown to play a role in enhancing the porosity, adsorbing ammonium (NH4+-N), and reducing nitrous oxide (N2O) emissions. In this paper, five groups of constructed microcosm wetlands (CW) were built in a greenhouse with different biochar doses of 40%, 30%, 20%, 10%, and 0% (named as BW-40, BW-30, BW-20, BW-10, and CW-K, respectively) to investigate the influences of biochar on pollutant removal efficiencies and N2O emissions. The results showed that the concentration of effluent dissolved oxygen (DO) was less than 0.5 mg·L-1, and the pH was stable at around 7.2 in every CW. Additionally, the effluent oxidation-reduction potential (ORP) was found to have moderately increased with the increases in the quantity of biochar, and the conductivity (Cond) test results showed the opposite trend. However, the effects of biochar on DO, pH, ORP, and Cond were not significant (P>0.05). The chemical oxygen demand (COD) removal rates were up to 90% in all CWs. On the other hand, significantly higher removal efficiencies for NH4+-N and total nitrogen (TN) were found in CWs filled with biochar (P<0.05). The average NH4+-N removal rates were (57.96±10.63)%, (51.12±11.74)%, (48.55±8.75)%, (43.95±9.74)%, and (34.76±14.16)% in BW-40, BW-30, BW-20, BW-10, and CW-K, respectively, while the total nitrogen (TN) average removal rates were (80.21±10.63)%, (78.48±5.73)%, (76.80±4.20)%, (75.88±5.85)%, and (70.92±5.68)%, respectively. Nitrate (NO3--N) was not detected in the CWs for there were sufficient carbon sources and suitable denitrification environments. Moreover, the average fluxes of N2O ranged from 13.53 mg·(m2·d)-1 to 45.30 mg·(m2·d)-1 in the experimental systems. Compared with the control, the reduction rates of N2O in the BW-40, BW30, BW20, and BW10 were 70.13%, 68.26%, 50.83%, and 37.90%, respectively, and the ratios of N2O emissions to the removed nitrogen in CWs with biochar were significantly lower than those in the CW without biochar. Positive correlations were observed between the N2O fluxes and nitrite (NO2--N) concentrations, and the lower N2O emissions could be attributed to the higher oxygen transfer and lower NO2--N accumulation rates in response to the biochar addition. These results demonstrate that biochar could be used as an amendment to strengthen the nitrogen removal and reduce the N2O emissions in CWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...