Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 120: 33-40, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33279825

RESUMO

Atmospheric greenhouse gas (GHG) concentration increases are a serious problem impacting global climate. Mitigation of agricultural GHG production is crucial as fertilized soils contribute substantially to changes in GHG atmospheric composition. Biochar derived from agricultural or forestry biowaste has been widely used in agriculture and may help mitigate GHG emissions. While different kinds of biochar and their effects on GHG emissions have been studied, feedstock particle size may interact with pyrolysis temperature to impact biochar effects on GHG emissions, but this has not been investigated. Here, feedstock particle size effects on biochar characteristics and soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions were studied using Camellia oleifera fruit shell feedstock with three particle size fractions (0.5-2, 2-5, and 5-10 mm) each pyrolyzed at 300, 450, and 600 °C. Results showed that dissolved organic carbon in biochar increased with particle size when pyrolyzed at 300 °C, but decreased with pyrolysis temperature. The 0.5-2 mm shell-derived biochar was associated with the lowest N2O and CO2 emission rates but the highest net nitrogen mineralization rates compared to 2-5 mm and 5-10 mm shell-derived biochar when pyrolyzed at 300 °C. Overall, shell particle size was more important for soil processes at lower pyrolysis temperatures with less variation among particle sizes at higher pyrolysis temperatures. The results indicated that feedstock particle size may interact with pyrolysis temperature and impact mitigation of soil N2O and CO2 emissions.


Assuntos
Óxido Nitroso , Solo , Agricultura , Dióxido de Carbono/análise , Carvão Vegetal , Óxido Nitroso/análise , Tamanho da Partícula , Pirólise , Temperatura
2.
Chemosphere ; 246: 125608, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31884231

RESUMO

Edible mushroom cultivation is an important industry in intensively managed forest understories. However, proper disposal of spent mushroom substrate (SMS) presents a challenge to its sustainable development. Biochar derived from SMS could be used to improve soil quality while providing a solution for SMS disposal. But SMS biochar pyrolyzed at different temperatures may alter carbon dioxide (CO2) and nitrous oxide (N2O) emissions associated with global warming, especially under the context of nitrogen (N) addition and warming. We conducted a factorial incubation study to examine greenhouse gas emissions and N transformations in moso bamboo forest soil amended with SMS-biochar (control vs. pyrolyzed at 300, 450 or 600 °C) in different N-addition (0 or 100 mg N kg-1 soil) and temperature (20, 25 or 30 °C) treatments. Pyrolysis temperature affected pH, C and N of SMS-biochars. N-transformations depended on the interaction of pyrolysis temperature, N-addition, and incubation temperature but were generally lower with 450 °C biochar addition. Soil N2O emissions increased with N-addition and they were more sensitive to incubation temperatures without biochar. Soil CO2 emissions increased with incubation temperature or biochar pyrolyzed at lower temperatures. Pyrolysis temperature might have regulated the effects of SMS-derived biochar on N2O emissions via changes in dissolved C, N, pH and associated changes in soil microbial community compositions. Because of the importance of sustainable development of this understory industry, amending soils with biochar produced at higher temperatures may be the best strategy for both the disposal of SMS and the mitigation of greenhouse gas emissions.


Assuntos
Agaricales , Carvão Vegetal/química , Pirólise , Solo/química , Dióxido de Carbono/análise , Carvão Vegetal/farmacologia , Florestas , Gases de Efeito Estufa/química , Óxido Nitroso/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...