Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834473

RESUMO

Rind color is an economically important agronomic trait in eggplant that impacts consumer preferences. In this study, bulked segregant analysis and competitive allele-specific PCR were employed to identify the candidate gene for eggplant rind color through constructing a 2794 F2 population generated from a cross between "BL01" (green pericarp) and "B1" (white pericarp). Genetic analysis of rind color revealed that a single dominant gene controls green color of eggplant peel. Pigment content measurement and cytological observations demonstrated that chlorophyll content and chloroplast number in BL01 were higher than in B1. A candidate gene (EGP19168.1) was fine-mapped to a 20.36 Kb interval on chromosome 8, which was predicted to encode the two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2). Subsequently, allelic sequence analysis revealed that a SNP deletion (ACT→AT) in white-skinned eggplant led to a premature termination codon. Genotypic validation of 113 breeding lines using the Indel marker closely linked to SmAPRR2 could predict the skin color (green/white) trait with an accuracy of 92.9%. This study will be valuable for molecular marker-assisted selection in eggplant breeding and provides theoretical foundation for analyzing the formation mechanism of eggplant peel color.


Assuntos
Solanum melongena , Mapeamento Cromossômico , Solanum melongena/genética , Melhoramento Vegetal , Fenótipo
2.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34948076

RESUMO

Solanum melongena L. (eggplant) bacterial wilt is a severe soil borne disease. Here, this study aimed to explore the regulation mechanism of eggplant bacterial wilt-resistance by transcriptomics with weighted gene co-expression analysis network (WGCNA). The different expression genes (DEGs) of roots and stems were divided into 21 modules. The module of interest (root: indianred4, stem: coral3) with the highest correlation with the target traits was selected to elucidate resistance genes and pathways. The selected module of roots and stems co-enriched the pathways of MAPK signalling pathway, plant pathogen interaction, and glutathione metabolism. Each top 30 hub genes of the roots and stems co-enriched a large number of receptor kinase genes. A total of 14 interesting resistance-related genes were selected and verified with quantitative polymerase chain reaction (qPCR). The qPCR results were consistent with those of WGCNA. The hub gene of EGP00814 (namely SmRPP13L4) was further functionally verified; SmRPP13L4 positively regulated the resistance of eggplant to bacterial wilt by qPCR and virus-induced gene silencing (VIGS). Our study provides a reference for the interaction between eggplants and bacterial wilt and the breeding of broad-spectrum and specific eggplant varieties that are bacterial wilt-resistant.


Assuntos
Resistência à Doença/genética , RNA-Seq , Ralstonia solanacearum , Solanum melongena/fisiologia , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Interações Hospedeiro-Patógeno , Sistema de Sinalização das MAP Quinases , Doenças das Plantas , Solanum melongena/genética , Solanum melongena/metabolismo , Solanum melongena/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...