Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vitro Cell Dev Biol Anim ; 59(4): 241-255, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37099179

RESUMO

Gene-knockout pigs have important applications in agriculture and medicine. Compared with CRISPR/Cas9 and cytosine base editing (CBE) technologies, adenine base editing (ABE) shows better safety and accuracy in gene modification. However, because of the characteristics of gene sequences, the ABE system cannot be widely used in gene knockout. Alternative splicing of mRNA is an important biological mechanism in eukaryotes for the formation of proteins with different functional activities. The splicing apparatus recognizes conserved sequences of the 5' end splice donor and 3' end splice acceptor motifs of introns in pre-mRNA that can trigger exon skipping, leading to the production of new functional proteins, or causing gene inactivation through frameshift mutations. This study aimed to construct a MSTN knockout pig by inducing exon skipping with the aid of the ABE system to expand the application of the ABE system for the preparation of knockout pigs. In this study, first, we constructed ABEmaxAW and ABE8eV106W plasmid vectors and found that their editing efficiencies at the targets were at least sixfold and even 260-fold higher than that of ABEmaxAW by contrasting the editing efficiencies at the gene targets of endogenous CD163, IGF2, and MSTN in pigs. Subsequently, we used the ABE8eV106W system to realize adenine base (the base of the antisense strand is thymine) editing of the conserved splice donor sequence (5'-GT) of intron 2 of the porcine MSTN gene. A porcine single-cell clone carrying a homozygous mutation (5'-GC) in the conserved sequence (5'-GT) of the intron 2 splice donor of the MSTN gene was successfully generated after drug selection. Unfortunately, the MSTN gene was not expressed and, therefore, could not be characterized at this level. No detectable genomic off-target edits were identified by Sanger sequencing. In this study, we verified that the ABE8eV106W vector had higher editing efficiency and could expand the editing scope of ABE. Additionally, we successfully achieved the precise modification of the alternative splice acceptor of intron 2 of the porcine MSTN gene, which may provide a new strategy for gene knockout in pigs.


Assuntos
Adenina , Edição de Genes , Animais , Suínos , Éxons/genética , Mutação , Técnicas de Inativação de Genes
2.
ACS Appl Mater Interfaces ; 13(28): 33496-33504, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34228430

RESUMO

The use of magnetic particles and carbon materials, particularly those with compatible dielectric and magnetic loss, is crucial in managing microwave pollution. However, the mismatched impedance of currently available absorbers constrains their practical applications. Herein, we demonstrate the potential of a metal-organic framework (MOF)-derived composite whose impedance matching is optimized through spraying and immersion of MOF precursors in carbon nanotube socks followed by carbonization. The composite presents extremely strong microwave absorption with a reflection loss of -30 dB, a thin thickness of 1.5 mm, and a wide frequency bandwidth of 7.8 GHz. The excellent absorption can still be maintained even at a fairly low temperature of -40 °C. Such results are primarily attributed to the synergistic effect between the hierarchical architecture and multiple components that greatly optimizes the impedance matching. We believe that the composite is a promising microwave absorber that can help to solve the critical electromagnetic wave pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...