Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
Environ Sci Technol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920332

RESUMO

Herein, we propose preferential dissolution paired with Cu-doping as an effective method for synergistically modulating the A- and B-sites of LaMnO3 perovskite. Through Cu-doping into the B-sites of LaMnO3, specifically modifying the B-sites, the double perovskite La2CuMnO6 was created. Subsequently, partial La from the A-sites of La2CuMnO6 was etched using HNO3, forming novel La2CuMnO6/MnO2 (LCMO/MnO2) catalysts. The optimized catalyst, featuring an ideal Mn:Cu ratio of 4.5:1 (LCMO/MnO2-4.5), exhibited exceptional catalytic ozonation performance. It achieved approximately 90% toluene degradation with 56% selectivity toward CO2, even under ambient temperature (35 °C) and a relatively humid environment (45%). Modulation of A-sites induced the elongation of Mn-O bonds and decrease in the coordination number of Mn-O (from 6 to 4.3) in LCMO/MnO2-4.5, resulting in the creation of abundant multivalent Mn and oxygen vacancies. Doping Cu into B-sites led to the preferential chemisorption of toluene on multivalent Cu (Cu(I)/Cu(II)), consistent with theoretical predictions. Effective electronic supplementary interactions enabled the cycling of multiple oxidation states of Mn for ozone decomposition, facilitating the production of reactive oxygen species and the regeneration of oxygen vacancies. This study establishes high-performance perovskites for the synergistic regulation of O3 and toluene, contributing to cleaner and safer industrial activities.

2.
Nat Commun ; 15(1): 5346, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914561

RESUMO

Global patterns of leaf nitrogen (N) and phosphorus (P) stoichiometry have been interpreted as reflecting phenotypic plasticity in response to the environment, or as an overriding effect of the distribution of species growing in their biogeochemical niches. Here, we balance these contrasting views. We compile a global dataset of 36,413 paired observations of leaf N and P concentrations, taxonomy and 45 environmental covariates, covering 7,549 sites and 3,700 species, to investigate how species identity and environmental variables control variations in mass-based leaf N and P concentrations, and the N:P ratio. We find within-species variation contributes around half of the total variation, with 29%, 31%, and 22% of leaf N, P, and N:P variation, respectively, explained by environmental variables. Within-species plasticity along environmental gradients varies across species and is highest for leaf N:P and lowest for leaf N. We identified effects of environmental variables on within-species variation using random forest models, whereas effects were largely missed by widely used linear mixed-effect models. Our analysis demonstrates a substantial influence of the environment in driving plastic responses of leaf N, P, and N:P within species, which challenges reports of a fixed biogeochemical niche and the overriding importance of species distributions in shaping global patterns of leaf N and P.


Assuntos
Nitrogênio , Fósforo , Filogenia , Folhas de Planta , Fósforo/metabolismo , Folhas de Planta/metabolismo , Nitrogênio/metabolismo , Ecossistema , Plantas/metabolismo , Plantas/classificação , Meio Ambiente , Especificidade da Espécie
3.
Nat Commun ; 15(1): 4106, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750031

RESUMO

China's extensive planted forests play a crucial role in carbon storage, vital for climate change mitigation. However, the complex spatiotemporal dynamics of China's planted forest area and its carbon storage remain uncaptured. Here we reveal such changes in China's planted forests from 1990 to 2020 using satellite and field data. Results show a doubling of planted forest area, a trend that intensified post-2000. These changes lead to China's planted forest carbon storage increasing from 675.6 ± 12.5 Tg C in 1990 to 1,873.1 ± 16.2 Tg C in 2020, with an average rate of ~ 40 Tg C yr-1. The area expansion of planted forests contributed ~ 53% (637.2 ± 5.4 Tg C) of the total above increased carbon storage in planted forests compared with planted forest growth. This proactive policy-driven expansion of planted forests has catalyzed a swift increase in carbon storage, aligning with China's Carbon Neutrality Target for 2060.

4.
Water Res ; 256: 121564, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615605

RESUMO

Natural organic matter (NOM) is a major sink of radicals in advanced oxidation processes (AOPs) and understanding the transformation of NOM is important in water treatment. By using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in conjunction with machine learning, we comprehensively investigated the reactivity and transformation of NOM, and the formation of organosulfates during the UV/peroxydisulfate (PDS) process. After 60 min UV/PDS treatment, the CHO formula number and dissolved organic carbon concentration significantly decreased by 83.4 % and 74.8 %, respectively. Concurrently, the CHOS formula number increased substantially from 0.7 % to 20.5 %. Machine learning identifies DBE and AImod as the critical characteristics determining the reactivity of NOM during UV/PDS treatment. Furthermore, linkage analysis suggests that decarboxylation and dealkylation reactions are dominant transformation pathways, while the additions of SO3 and SO4 are also non-negligible. According to SHAP analysis, the m/z, number of oxygens, DBE and O/C of NOM were positively correlated with the formation of organosulfates in UV/PDS process. 92 organosulfates were screened out by precursor ion scan of HPLC-MS/MS and verified by UPLC-Q-TOF-MS, among which, 7 organosufates were quantified by authentic standards with the highest concentrations ranging from 2.1 to 203.0 ng L‒1. In addition, the cytotoxicity of NOM to Chinese Hamster Ovary (CHO) cells increased by 13.8 % after 30 min UV/PDS treatment, likely responsible for the formation of organosulfates. This is the first study to employ FT-ICR MS combined with machine learning to identify the dominant NOM properties affecting its reactivity and confirmed the formation of organosulfates from sulfate radical oxidation of NOM.


Assuntos
Aprendizado de Máquina , Sulfatos , Sulfatos/química , Animais , Células CHO , Raios Ultravioleta , Cricetulus , Espectrometria de Massas , Purificação da Água/métodos , Oxirredução
5.
Shock ; 62(1): 4-12, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38321608

RESUMO

ABSTRACT: Objective : The aim of the study is to investigate the efficacy of intravenous immunoglobulin (IVIg) in treating sepsis-induced coagulopathy ( SIC ). Methods : A retrospective controlled analysis was conducted on 230 patients with SIC at Ganzhou People's Hospital from January 2016 to December 2022. All patients were screened using propensity score matching and treated according to the SSC2016 guidelines. Compared with the control group (n = 115), patients in the test group (n = 115) received IVIg (200 mg/kg.d) for 3 consecutive days after admission. The rating scales, coagulation function, survival, and treatment duration were evaluated. Results : On day 3 of treatment, both groups exhibited reduced platelet and thromboelastogram (TEG) maximum amplitude (MA) levels, with the control group showing a more significant decrease ( P < 0.05). By the fifth day, these levels had recovered in both groups. However, the test group experienced a significant increase by day 7 ( P < 0.05). Coagulation factors II and X began to increase on day 3, and normalization was significantly faster in the test group on day 5 ( P < 0.05). The levels of prothrombin time, international normalized ratio, activated partial thromboplastin time, d -dimer, fibrinogen, fibrin degradation products, TEG-R, and TEG-K exhibited a notable decline on day 3 and demonstrated significantly faster recovery on day 5 in the test group ( P < 0.05). In addition, both groups showed a reduction in Acute Physiology and Chronic Health Evaluation II, Sequential Organ Failure Assessment, disseminated intravascular coagulation, and lactate (LAC) levels on day 3, but the test group's scores decreased significantly more by day 7 ( P < 0.05). Within the test group, white blood cell count, C-reactive protein, procalcitonin, IL-6, and Tmax levels were lower ( P < 0.05). Furthermore, the test group demonstrated shorter duration for intensive care unit stay, mechanical ventilation, and continuous renal replacement therapy ( P < 0.05). No significant differences were observed in the duration of fever or vasoactive drug use between the groups. However, the log-rank method indicated a higher 28-day survival rate in the test group ( P < 0.05). Conclusion : IVIg can successfully increase platelet count and coagulation factors, correct coagulation disorders, enhance organ function, and reduce 28-day mortality in patients with SIC .


Assuntos
Transtornos da Coagulação Sanguínea , Imunoglobulinas Intravenosas , Sepse , Humanos , Estudos Retrospectivos , Imunoglobulinas Intravenosas/uso terapêutico , Masculino , Feminino , Pessoa de Meia-Idade , Sepse/tratamento farmacológico , Sepse/sangue , Sepse/complicações , Sepse/mortalidade , Idoso , Transtornos da Coagulação Sanguínea/tratamento farmacológico , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/sangue , Transtornos da Coagulação Sanguínea/terapia , Adulto
6.
Environ Sci Technol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334031

RESUMO

Recently, reactive cobalt (Co) species, including Co(IV)-oxo and Co(II)-OOSO3- complexes, were proposed to be the primary intermediates formed during the process of activating peroxymonosulfate (PMS) by Co(II), mainly based on the observation that the methyl phenyl sulfoxide (MPSO) probe was transformed to methyl phenyl sulfone (MPSO2) in this process. However, in this work, we rationalized the results of the MPSO probe assay based on the chemistry of aqueous Co(III), an alternative reactive Co species. Moreover, 18O-labeled water experiments and Raman spectroscopy analysis clearly proved the Co(III) formation in the Co(II)/PMS system. In parallel, sulfate radicals (SO4•-) and hydroxyl radicals (HO•) were also involved in this system. Further, the relative contribution of Co(III) to the abatement of carbamazepine (CBZ), a representative micropollutant, in the Co(II)/PMS system was significantly increased by increasing the Co(II) dosage but was dramatically decreased by improving the PMS dosage and increasing the pH from 3 to 7. Additionally, the degradation pathway of CBZ by Co(III) and the Co(II)/PMS system was comparatively explored, confirming that Co(III) participated in the hydroxylation, carbonylation, deacetylation, and ring reduction of CBZ by the Co(II)/PMS system. Our work addresses the controversy regarding the reactive Co species involved in the Co(II)/PMS system with evidence of Co(III) as the chief one, which highlights the significance of re-evaluating the relative contribution of Co(III) in relevant environmental decontamination processes.

7.
Plant Divers ; 46(1): 49-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38343596

RESUMO

Beta-diversity reflects the spatial changes in community species composition which helps to understand how communities are assembled and biodiversity is formed and maintained. Larch (Larix) forests, which are coniferous forests widely distributed in the mountainous and plateau areas in North and Southwest China, are critical for maintaining the environmental conditions and species diversity. Few studies of larch forests have examined the beta-diversity and its constituent components (species turnover and nestedness-resultant components). Here, we used 483 larch forest plots to determine the total beta-diversity and its components in different life forms (i.e., tree, shrub, and herb) of larch forests in China and to evaluate the main drivers that underlie this beta-diversity. We found that total beta-diversity of larch forests was mainly dependent on the species turnover component. In all life forms, total beta-diversity and the species turnover component increased with increasing geographic, elevational, current climatic, and paleoclimatic distances. In contrast, the nestedness-resultant component decreased across these same distances. Geographic and environmental factors explained 20%-25% of total beta-diversity, 18%-27% of species turnover component, and 4%-16% of nestedness-resultant component. Larch forest types significantly affected total beta-diversity and species turnover component. Taken together, our results indicate that life forms affect beta-diversity patterns of larch forests in China, and that beta-diversity is driven by both niche differentiation and dispersal limitation. Our findings help to greatly understand the mechanisms of community assemblies of larch forests in China.

8.
New Phytol ; 241(3): 1088-1099, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37991013

RESUMO

Stoichiometric rules may explain the allometric scaling among biological traits and body size, a fundamental law of nature. However, testing the scaling of elemental stoichiometry and growth to size over the course of plant ontogeny is challenging. Here, we used a fast-growing bamboo species to examine how the concentrations and contents of carbon (C), nitrogen (N) and phosphorus (P), relative growth rate (G), and nutrient productivity scale with whole-plant mass (M) at the culm elongation and maturation stages. The whole-plant C content vs M and N content vs P content scaled isometrically, and the N or P content vs M scaled as a general 3/4 power function across both growth stages. The scaling exponents of G vs M and N (and P) productivity in newly grown mass vs M relationships across the whole growth stages decreased as a -1 power function. These findings reveal the previously undocumented generality of stoichiometric allometries over the course of plant ontogeny and provide new insights for understanding the origin of ubiquitous quarter-power scaling laws in the biosphere.


Assuntos
Fósforo , Plantas , Desenvolvimento Vegetal , Tamanho Corporal , Nitrogênio
9.
Environ Toxicol ; 39(1): 135-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37671635

RESUMO

BACKGROUND: Septic myocardial injury is one of the most life-threatening organ dysfunction. The γ-secretase-based approaches have been developed as potential strategies for diverse diseases management. Unfortunately, the role of γ-secretase inhibitor in septic myocardial injury is unclarified. The present study aims to investigate the effect of γ-secretase inhibitor in septic myocardial injury and reveal its mechanism. METHODS: The mouse model of septic myocardial injury was established by intraperitoneally injection of lipopolysaccharide (LPS), and γ-secretase inhibitor MW167 was applied in this model. RNA-sequencing analysis and further bioinformatics analyses were used to screen differential expressed genes (DEGs) and potentially enriched pathways between LPS and LPS + MW167 mice. Pathological examination was performed using haematoxylin and eosin (HE) staining. SD-1029 was used to block JAK2/STAT3 signaling in H9C2 cells and western blot analysis quantified JAK2/STAT3-related proteins. RESULTS: LPS induced myocardial injury accompanied with significant inflammatory infiltration and more apoptotic cells. Transcriptome sequencing screened 36 DEGs and bioinformatics identified JAK2/STAT3 signaling pathway was significantly enriched. Further in vitro experiments showed that γ-secretase inhibitor MW167 activated JAK2/STAT3 pathway. Additionally, MW167 restored cell viability, decreased myocardial injury markers including cardiac troponin I (cTnI) and brain natriuretic peptide (BNP), inhibited pro-inflammatory cytokines such as interleukin (IL)-1ß and tumor necrosis factor-α (TNF-α) and reduced nitric oxide (NO), cyclooxygenase-2 (COX2) and inducible nitric oxide synthase (iNOS) release. Application of SD-1029 reversely deteriorated LPS-induced myocardial injury and inflammatory response in γ-secretase inhibitor-treated myocardial cells. CONCLUSION: The results demonstrate that γ-secretase inhibitor alleviates septic myocardial injury via activating JAK2/STAT3 signaling, and provide novel therapeutic direction for septic myocardial injury.


Assuntos
Secretases da Proteína Precursora do Amiloide , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Secretases da Proteína Precursora do Amiloide/metabolismo , Transdução de Sinais , Citocinas/metabolismo , Miocárdio/metabolismo , Fator de Transcrição STAT3/metabolismo , Janus Quinase 2/metabolismo
10.
Cell Cycle ; 22(21-22): 2392-2408, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38124367

RESUMO

Homologous repair deficiency (HRD) impedes double-strand break repair, which is a common driver of carcinogenesis. Positive HRD status can be used as theranostic markers of response to platinum- and PARP inhibitor-based chemotherapies. Here, we aimed to fully investigate the therapeutic and prognostic potential of HRD in pancreatic adenocarcinoma (PAAD) and identify effective biomarkers related to HRD using comprehensive bioinformatics analysis. The HRD score was defined as the unweighted sum of the LOH, TAI, and LST scores, and it was obtained based on the previous literature. To characterize PAAD immune infiltration subtypes, the "ConsensusClusterPlus" package in R was used to conduct unsupervised clustering. A WGCNA was conducted to elucidate the gene coexpression modules and hub genes in the HRD-related gene module of PAAD. The functional enrichment study was performed using Metascape. LASSO analysis was performed using the "glmnet" package in R, while the random forest algorithm was realized using the "randomForest" package in R. The prognostic variables were evaluated using univariate Cox analysis. The prognostic risk model was built using the LASSO approach. ROC curve and KM survival analyses were performed to assess the prognostic potential of the risk model. The half-maximal inhibitory concentration (IC50) of the PARP inhibitors was estimated using the "pRRophetic" package in R and the Genomics of Drug Sensitivity in Cancer database. The "rms" package in R was used to create the nomogram. A high HRD score indicated a poor prognosis and an advanced clinical process in PAAD patients. PAAD tumors with high HRD levels revealed significant T helper lymphocyte depletion, upregulated levels of cancer stem cells, and increased sensitivity to rucaparib, Olaparib, and veliparib. Using WGCNA, 11 coexpression modules were obtained. The red module and 122 hub genes were identified as the most correlated with HRD in PAAD. Functional enrichment analysis revealed that the 122 hub genes were mainly concentrated in cell cycle pathways. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were screened via LASSO analysis and a random forest algorithm, and they were validated using independent validation sets. No direct association between HRD and CKS1B, HJURP, or TPX2 has not been reported in the literature so far. Thus, these findings indicated that CKS1B, HJURP, and TPX2 have potential as diagnostic and prognostic biomarkers for PAAD. We constructed a novel HRD-related prognostic model that provides new insights into PAAD prognosis and immunotherapy. Based on bioinformatics analysis, we comprehensively explored the therapeutic and prognostic potential of HRD in PAAD. One novel HRD-related gene signature consisting of CKS1B, HJURP, and TPX2 were identified through the combination of WGCNA, LASSO analysis and a random forest algorithm. A novel HRD-related risk model that can predict clinical prognosis and immunotherapeutic response in PAAD patients was constructed.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Genes cdc , Aprendizado de Máquina , Biomarcadores
11.
Nat Commun ; 14(1): 7609, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993449

RESUMO

The rapid diversification and high species richness of flowering plants is regarded as 'Darwin's second abominable mystery'. Today the global spatiotemporal pattern of plant diversification remains elusive. Using a newly generated genus-level phylogeny and global distribution data for 14,244 flowering plant genera, we describe the diversification dynamics of angiosperms through space and time. Our analyses show that diversification rates increased throughout the early Cretaceous and then slightly decreased or remained mostly stable until the end of the Cretaceous-Paleogene mass extinction event 66 million years ago. After that, diversification rates increased again towards the present. Younger genera with high diversification rates dominate temperate and dryland regions, whereas old genera with low diversification dominate the tropics. This leads to a negative correlation between spatial patterns of diversification and genus diversity. Our findings suggest that global changes since the Cenozoic shaped the patterns of flowering plant diversity and support an emerging consensus that diversification rates are higher outside the tropics.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Filogenia , Plantas , Extinção Biológica , Evolução Biológica
12.
Environ Sci Technol ; 57(48): 20339-20348, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37946521

RESUMO

Reactive bromine species (RBS) are gaining increasing attention in natural and engineered aqueous systems containing bromide ions (Br-). However, their roles in the degradation of structurally diverse micropollutants by advanced oxidation processes (AOPs) were not differentiated. In this study, the second-order rate constants (k) of Br•, Br2•-, BrO•, and ClBr•- were collected and evaluated. Br• is the most reactive RBS toward 21 examined micropollutants with k values of 108-1010 M-1 s-1. Br2•-, ClBr•-, and BrO• are selective for electron-rich micropollutants with k values of 106-108 M-1 s-1. The specific roles of RBS in aqueous micropollutant degradation in AOPs were revealed by using simplified models via sensitivity analysis. Generally, RBS play minimal roles in the UV/H2O2 process but are significant in the UV/peroxydisulfate (PDS) and UV/chlorine processes in the presence of trace Br-. In UV/PDS with ≥1 µM Br-, Br• emerges as the major RBS for removing electron-rich micropollutants. In UV/chlorine, BrO• contributes to the degradation of specific electron-rich micropollutants with removal percentages of ≥20% at 1 µM Br-, while the contributions of BrO• and Br• are comparable to those of reactive chlorine species as Br- concentration increases to several µM. In all AOPs, Br2•- and ClBr•- play minor roles at 1-10 µM Br-. Water matrix components such as HCO3-, Cl-, and natural organic matter (NOM) significantly inhibit Br•, while BrO• is less affected, only slightly scavenged by NOM with a k value of 2.1 (mgC/L)-1 s-1. This study sheds light on the differential roles of multiple RBS in micropollutant abatement by AOPs in Br--containing water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bromo , Brometos , Água , Cloro/análise , Peróxido de Hidrogênio , Poluentes Químicos da Água/análise , Raios Ultravioleta , Oxirredução , Cloretos
13.
Water Res ; 246: 120695, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812978

RESUMO

Peracetic acid (PAA) is regarded as an environmentally friendly oxidant because of its low formation of toxic byproducts. However, this study revealed the potential risk of generating disinfection byproducts (DBPs) when treating iodine-containing wastewater with PAA. The transformation efficiency of bisphenol A (BPA), a commonly detected phenolic contaminant and a surrogate for phenolic moieties in dissolved organic matter, by PAA increased rapidly in the presence of I-, which was primarily attributed to the formation of active iodine (HOI/I2) in the system. Kinetic model simulations demonstrated that the second-order rate constant between PAA and HOI was 54.0 M-1 s-1 at pH 7.0, which was lower than the generation rate of HOI via the reaction between PAA and I-. Therefore, HOI can combine with BPA to produce iodine disinfection byproducts (I-DBPs). The transformation of BPA and the generation of I-DBPs in the I-/PAA system were highly pH-dependent. Specifically, acidic conditions were more favorable for BPA degradation because of the higher reaction rates of BPA and HOI. More iodinated aromatic products were detected after 5 min of the reaction under acidic and neutral conditions, resulting in higher toxicity towards E. coli. After 12 h of the reaction, more adsorbable organic iodine (AOI) was generated at alkaline conditions because HOI was not able to efficiency transform to IO3-. The presence of H2O2 in the PAA solution played a role in the reaction with HOI, particularly under alkaline conditions. This study significantly advances the understanding of the role of I- in BPA oxidation by PAA and provides a warning to further evaluate the potential environmental risk during the treatment of iodine-bearing wastewater with PAA.


Assuntos
Iodo , Poluentes Químicos da Água , Purificação da Água , Ácido Peracético , Desinfecção/métodos , Iodetos , Peróxido de Hidrogênio , Águas Residuárias , Escherichia coli , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Purificação da Água/métodos
14.
Water Res ; 245: 120562, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708775

RESUMO

Permanganate (Mn(VII)) is widely used as an oxidant in water treatment and usually reduced to nascent manganese dioxide (MnO2), which could promote Mn(VII) oxidation for the Mn(VII)-reactive compounds such as phenols and anilines. However, the removal of micropollutants containing diverse functional groups and the underlying mechanisms remain largely unexplored. This study reveals that Mn(VII)/nascent MnO2 was effective for the degradation of Mn(VII)-inert micropollutants, including sulfonamide antibiotics, ß-blockers and trimethoprim, with observed first-order rate constants (k'obs) of 0.126 ∼ 9 min-1 at pH 4.0. The synergetic effect of Mn(VII) and nascent MnO2 on the degradation of Mn(VII)-inert micropollutants decreased significantly when pH increased from 4.0 to 9.5. MnO2 played multiple roles in micropollutant degradation, which acted as a catalyst to promote the Mn(VII) oxidation of trimethoprim and propranolol, as well as an oxidant in propranolol degradation. Besides, Mn(III) oxidation accounted for 58% of the overall degradation of propranolol, but was not important for trimethoprim oxidation. Hydroxylated products were common products formed in Mn(VII)/MnO2. Differently, trimethoprim tended to form single-ring products via MnO2-catalyzed Mn(VII) oxidation, while propranolol preferentially formed dimers via in situ formed MnO2 oxidation. This study is the first to report that MnO2 enhances the abatement of Mn(VII)-inert micropollutants during Mn(VII)-based water treatment and unravels the multiple roles of MnO2 in micropollutant degradation by Mn(VII)/MnO2.

15.
J Phys Condens Matter ; 35(50)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37683669

RESUMO

Quantum spin Hall effect is characterized by topologically protected helical edge states. Here we study the thermal dissipation of helical edge states by considering two types of dissipation sources. The results show that the helical edge states are dissipationless for normal dissipation sources with or without Rashba spin-orbit coupling in the system, but they are dissipative for spin dissipation sources. Further studies on the energy distribution show that electrons with spin-up and spin-down are both in their own equilibrium without dissipation sources. Spin dissipation sources can couple the two subsystems together to induce voltage drop and non-equilibrium distribution, leading to thermal dissipation, while normal dissipation sources cannot. With the increase of thermal dissipation, the subsystems of electrons with spin-up and spin-down evolve from non-equilibrium finally to mutual equilibrium. In addition, the effects of disorder on thermal dissipation are also discussed. Our work provides clues to reduce thermal dissipation in the quantum spin Hall systems.

16.
Water Res ; 242: 120288, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37419027

RESUMO

Amoebae are widespread in water and serve as environment vectors for pathogens, which may threaten public health. This study evaluated the inactivation of amoeba spores and their intraspore bacteria by solar/chlorine. Dictyostelium discoideum and Burkholderia agricolaris B1qs70 were selected as model amoebae and intraspore bacteria, respectively. Compared to solar irradiation and chlorine, solar/chlorine enhanced the inactivation of amoeba spores and intraspore bacteria, with 5.1 and 5.2-log reduction at 20 min, respectively. The enhancement was similar in real drinking water by solar/chlorine under natural sunlight. However, the spore inactivation decreased to 2.97-log by 20 min solar/chlorine under oxygen-free condition, indicating that ozone played a crucial role in the spore inactivation, as also confirmed by the scavenging test using tert­butanol to scavenge the ground-state atomic oxygen (O(3P)) as a ozone precursor. Moreover, solar/chlorine induced the shape destruction and structural collapse of amoeba spores by scanning electron microscopy. As for intraspore bacteria, their inactivation was likely ascribed to endogenous reactive oxygen species. As pH increased from 5.0 to 9.0, the inactivation of amoeba spores decreased, whereas that of intraspore bacteria was similar at pH 5.0 and 6.5 during solar/chlorine treatment. This study first reports the efficient inactivation of amoeba spores and their intraspore pathogenic bacteria by solar/chlorine in drinking water.


Assuntos
Amoeba , Dictyostelium , Água Potável , Ozônio , Purificação da Água , Cloro , Luz Solar , Cinética , Esporos de Protozoários , Bactérias , Desinfecção
17.
J Hazard Mater ; 457: 131772, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37307725

RESUMO

Cyanobacterial blooms present great challenges to drinking water treatment and human health. The novel combination of potassium permanganate (KMnO4) and ultraviolet (UV) radiation is engaged as a promising advanced oxidation process in water purification. This study investigated the treatment of a typical cyanobacteria, Microcystis aeruginosa by UV/KMnO4. Cell inactivation was significantly improved by UV/KMnO4 treatment, compared to UV alone or KMnO4 alone, and cells were completely inactivated within 35 min by UV/KMnO4 in natural water. Moreover, effective degradation of associated microcystins was simultaneously achieved at UV fluence rate of 0.88 mW cm-2 and KMnO4 dosages of 3-5 mg L-1. The significant synergistic effect is possibly attributable to the highly oxidative species produced during UV photolysis of KMnO4. In addition, the cell removal efficiency via self-settling reached 87.9 % after UV/KMnO4 treatment, without additional coagulants. The fast in situ generated manganese dioxide was responsible for the enhancement of M. aeruginosa cell removal. This study firstly reports multiple roles of UV/KMnO4 process in cyanobacterial cell inactivation and removal, as well as simultaneous microcystin degradation under practical conditions.


Assuntos
Cianobactérias , Microcystis , Purificação da Água , Humanos , Microcistinas/metabolismo , Microcystis/metabolismo , Permanganato de Potássio
18.
Environ Sci Technol ; 57(24): 9055-9063, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37285149

RESUMO

The ultraviolet (UV)/chlorine process has attracted increasing attention for micropollutant abatement. However, the limited hydroxyl radical (HO•) generation and the formation of undesired disinfection byproducts (DBPs) are the two major issues in this process. This study investigated the roles of activated carbon (AC) in the UV/chlorine/AC-TiO2 process for micropollutant abatement and DBP control. The degradation rate constant of metronidazole by UV/chlorine/AC-TiO2 was 3.44, 2.45, and 1.58 times higher than those by UV/AC-TiO2, UV/chlorine, and UV/chlorine/TiO2, respectively. AC acted as an electron conductor and dissolved oxygen (DO) adsorbent, resulting in the steady-state concentration of HO• that was ∼2.5 times that of UV/chlorine. Compared with UV/chlorine, the formation of total organic chlorine (TOCl) and known DBPs in UV/chlorine/AC-TiO2 was reduced by 62.3 and 75.7%, respectively. DBP could be controlled via adsorption on AC, and the increased HO• and decreased chlorine radical (Cl•) and chlorine exposure reduced DBP formation. UV/chlorine/AC-TiO2 efficiently abated 16 structurally different micropollutants under environmentally relevant conditions owing to the enhanced generation of HO•. This study provides a new strategy for designing catalysts with photocatalytic and adsorption properties for UV/chlorine to promote micropollutant abatement and DBP control.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Carvão Vegetal , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Raios Ultravioleta , Desinfecção , Halogenação , Cloretos
19.
Environ Sci Technol ; 57(47): 18754-18764, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294018

RESUMO

Formation of nitrogenous disinfection byproducts from aliphatic amines is a widespread concern owing to the serious health risks associated with them. However, the mechanisms of transforming aliphatic amines and forming nitro products in the UV/chlorine process have rarely been discussed, which are investigated in this work. Initially, secondary amines (R1R2NH) are transformed into secondary organic chloramines (R1R2NCl) via chlorination. Subsequently, radicals, such as HO• and Cl•, are found to contribute predominantly to such transformations. The rate constants at which HO•, Cl•, and Cl2•- react with R1R2NCl are (2.4-5.1) × 109, (1.5-3.8) × 109, and (1.2-6.1) × 107 M-1 s-1, respectively. Consequently, R1R2NCl are transformed into primary amines (R1NH2/R2NH2) and chlorinated primary amines (R1NHCl/R2NHCl and R1NCl2/R2NCl2) by excess chlorine. Furthermore, primarily driven by UV photolysis, chlorinated primary amines can be transformed into nitroalkanes with conversion rates of ∼10%. Dissolved oxygen and free chlorine play crucial roles in forming nitroalkanes, and post-chlorination can further form chloronitroalkanes, such as trichloronitromethane (TCNM). Radicals are involved in forming TCNM in the UV/chlorine process. This study provides new insights into the mechanisms of transforming aliphatic amines and forming nitro products using the UV/chlorine process.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Poluentes Químicos da Água/análise , Aminas , Halogenação , Desinfecção , Raios Ultravioleta
20.
Water Res ; 240: 120100, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247439

RESUMO

Solar photolysis of free chlorine (solar/chlorine) in bromide-containing water occurs under various scenarios, such as chlorinated reservoirs and outdoor swimming pools, and the formation of chlorate and bromate is an important issue in the system. We reported unexpected trends for the formation of chlorate and bromate in the solar/chlorine system. Excess chlorine inhibited the formation of bromate, i.e., increasing chlorine dosages from 50 to 100 µM reduced the bromate yield from 6.4 to 1.2 µM in solar/chlorine at 50 µM bromide and pH 7. The yield of bromate in solar/chlorine at 100 µM chlorine and 50 µM bromide in 240 min was 18.8% of that at 50 µM bromine only. The underlying mechanism was that HOCl can react with bromite (BrO2-) to form HOClOBrO-, whose multi-step transformation finally formed chlorate as the major product and bromate as the minor product. This reaction overwhelmed the oxidation of bromite to form bromate by reactive species, such as •OH, BrO• and ozone. On the other hand, the presence of bromide greatly enhanced the formation of chlorate. Increasing bromide concentrations from 0 to 50 µM enhanced the chlorate yields from 2.2 to 7.0 µM at 100 µM chlorine. The absorbance of bromine was higher than that of chlorine, thus the photolysis of bromine formed higher levels of bromite at higher bromide concentrations. Then, bromite rapidly reacted with HOCl to form HOClOBrO- and it further transformed to chlorate. Additionally, 1 mg L-1 NOM had a negligible effect on bromate yields in solar/chlorine at 50 µM bromide, 100 µM chlorine and pH 7. This study demonstrated a new pathway of chlorate and bromate formation in the solar/chlorine system with bromide.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Brometos , Cloro , Água , Cloratos , Bromo , Bromatos , Fotólise , Cloretos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...