Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 42(4): 727-739, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34718811

RESUMO

Quantifying inter-specific variations of tree resilience to drought and revealing the underlying mechanisms are of great importance to the understanding of forest functionality, particularly in water-limited regions. So far, comprehensive studies incorporating investigations in inter-specific variations of long-term growth patterns of trees and the underlying physiological mechanisms are very limited. Here, in a semi-arid site of northern China, tree radial growth rate, inter-annual tree-ring growth responses to climate variability, as well as physiological characteristics pertinent to xylem hydraulics, carbon assimilation and drought tolerance were analyzed in seven pine species growing in a common environment. Considerable inter-specific variations in radial growth rate, growth response to drought and physiological characteristics were observed among the studied species. Differently, the studied species exhibited similar degrees of resistance to drought-induced branch xylem embolism, with water potential corresponding to 50% loss hydraulic conductivity ranging from -2.31 to -2.96 MPa. We found that higher branch hydraulic efficiency is related to greater leaf photosynthetic capacity, smaller hydraulic safety margin and lower woody density (P < 0.05, linear regressions), but not related to higher tree radial growth rate (P > 0.05). Rather, species with higher hydraulic conductivity and photosynthetic capacity were more sensitive to drought stress and tended to show weaker growth resistance to extreme drought events as quantified by tree-ring analyses, which is at least partially due to a trade-off between hydraulic efficiency and safety across species. This study thus demonstrates the importance of drought resilience rather than instantaneous water and carbon flux capacity in determining tree growth in water-limited environments.


Assuntos
Secas , Pinus , Árvores/fisiologia , Água/fisiologia , Xilema/fisiologia
2.
Tree Physiol ; 38(12): 1792-1804, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30376119

RESUMO

Nonstructural carbohydrates (NSC) have been proposed to play an important role in maintaining the hydraulic integrity of trees, particularly in environments with high risks of embolism formation, but knowledge about the interaction between NSC reserves and xylem hydraulics is still very limited. We studied the variation of NSC reserves and hydraulic traits in Pinus koraiensis Sieb. et Zucc. (Korean pine) in March and June across a relatively large altitudinal gradient in Changbai Mountain of Northeast China. One of the major aims was to investigate the potential role NSC plays in maintaining hydraulic integrity of overwintering stems in facing freezing-induced embolism. Consistent with our hypotheses, substantial variations in both NSC contents and hydraulic traits were observed across altitudes and between the two seasons. In March, when relatively high degrees of winter embolism exist, the percentage loss of conductivity (PLC) showed an exponential increase with altitude. Most notably, positive correlations between branch and trunk soluble sugar content and PLC (P = 0.053 and 0.006) were observed across altitudes during this period. These correlations could indicate that more soluble sugars are required for maintaining stem hydraulic integrity over the winter by resisting or refilling freezing-induced embolism in harsher environments, although more work is needed to establish a direct causal relationship between NSC dynamics and xylem hydraulics. If the correlation is indeed directly associated with varying demands for maintaining hydraulic integrity across environmental gradients, greater carbon demands may compromise tree growth under conditions of higher risk of winter embolism leading to a trade-off between competitiveness and stress resistance, which may be at least partially responsible for the lower dominance of Korean pine trees at higher altitudes.


Assuntos
Metabolismo dos Carboidratos , Pinus/metabolismo , Árvores/metabolismo , Xilema/metabolismo , Altitude , China , Hidrologia , Caules de Planta/metabolismo , Estações do Ano
3.
Ying Yong Sheng Tai Xue Bao ; 24(6): 1517-24, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-24066534

RESUMO

Taking the two-year old potted Prunus sibirica seedlings as test materials, and using CIRAS-2 photosynthetic system, this paper studied the CO2 response process of P. sibirica photosynthesis in semi-arid loess hilly region under eight soil moisture conditions. The CO2 response data of P. sibirica were fitted and analyzed by rectangular hyperbola model, exponential equation, and modified rectangular hyperbola model. Meanwhile, the quantitative relationships between the photosynthesis and the soil moisture were discussed. The results showed that the CO2 response process of P. sibirica photosynthesis had obvious response characteristics to the soil moisture threshold. The relative soil water content (RWC) required to maintain the higher photosynthetic rate (P(n)) and carboxylation efficiency (CE) of P. sibirica was in the range of 46.3%-81.9%. In this RWC range, the photosynthesis did not appear obvious CO2 saturated inhibition phenomenon. When the RWC exceeded this range, the photosynthetic capacity (P(n max)), CE, and CO2 saturation point (CSP) decreased evidently. Under different soil moisture conditions, there existed obvious differences among the three models in simulating the CO2 response data of P. sibirica. When the RWC was in the range of 46.3%-81.9%, the CO2 response process and the characteristic parameters such as CE, CO2 compensation point (see symbol), and photorespiration rate (R(p)) could be well fitted by the three models, and the accuracy was in the order of modified rectangular hyperbola model > exponential equation > rectangular hyperbola model. When the RWC was too high or too low, namely, the RWC was > 81.9% or < 46.3%, only the modified rectangular hyperbola model could well fit the CO2 response process and the characteristic parameters. It was suggested that when the RWC was from 46.3% to 81.9%, the photosynthetic efficiency of P. sibirica was higher, and, as compared with rectangular hyperbola model and exponential equation, modified rectangular hyperbola model had more applicability to fit the CO2 response data of P. sibirica photosynthesis under different soil moisture conditions.


Assuntos
Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Prunus/fisiologia , Solo/química , Água/análise , China , Simulação por Computador , Modelos Teóricos
4.
J Neurosurg ; 110(3): 462-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19025353

RESUMO

OBJECT: Brain edema formation following intracerebral hemorrhage (ICH) appears to be partly related to erythrocyte lysis and hemoglobin release. An increase of brain water content was associated with an increase of brain iron, which is an erythrocyte degradation product. Expression of AQP4 is highly modified in several brain disorders, and it can play a key role in cerebral edema formation. However, the question whether AQP4 is regulated by drugs lacks reliable evidence, and the interacting roles of iron overload and AQP4 in brain edema after ICH are unknown. The goal of this study was to clarify the relationship between iron overload and AQP4 expression and to characterize the effects of the iron chelator deferoxamine (DFO) on delayed brain edema after experimental ICH. METHODS: A total of 144 Sprague-Dawley rats weighing between 250 and 300 g were used in this work. The animals were randomly divided into 4 groups. The ICH models (Group C) were generated by injecting 100 microl autologous blood stereotactically into the right caudate nucleus; surgical control rats (Group B) were generated in a similar fashion, by injecting 100 microl saline into the right caudate nucleus. Intervention models (Group D) were established by intraperitoneal injection of DFO into rats in the ICH group. Healthy rats (Group A) were used for normal control models. Brain water content, iron deposition, and AQP4 in perihematomal brain tissue were evaluated over the time course of the study (1, 3, 7, and 14 days) in each group. RESULTS: Iron deposition was found in the perihematomal zone as early as the 1st day after ICH, reaching a peak after 7 days and remaining at a high level thereafter for at least 14 days following ICH. Rat brain water content around the hematoma increased progressively over the time course, reached its peak at Day 3, and still was evident at Day 7 post-ICH. Immunohistochemical analysis showed that AQP4 was richly expressed over glial cell processes surrounding microvessels in the rat brain; there was upregulation of the AQP4 expression in perihematomal brain during the observation period, and it reached maximum at 3 to 7 days after ICH. The changes of brain water content were accompanied by an alteration of AQP4. The application of the iron chelator DFO significantly reduced iron overload, brain water content, and AQP4 level in the perihematomal area compared with the control group. CONCLUSIONS: Iron overload and AQP4 may play a critical role in the formation of brain edema after ICH. In addition, AQP4 expression was affected by iron concentration. Importantly, treatment with DFO significantly reduced brain edema in rats and inhibited the AQP4 upregulation after ICH. Deferoxamine may be a potential therapeutic agent for treating ICH.


Assuntos
Aquaporina 4/fisiologia , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Hemorragia Cerebral/complicações , Sobrecarga de Ferro/etiologia , Animais , Aquaporina 4/análise , Química Encefálica , Hemorragia Cerebral/tratamento farmacológico , Desferroxamina/uso terapêutico , Feminino , Histocitoquímica , Humanos , Imuno-Histoquímica , Masculino , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sideróforos/uso terapêutico , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...