Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826431

RESUMO

The ventral pallidum (VP) is critical for motivated behaviors. While contemporary work has begun to elucidate the functional diversity of VP neurons, the molecular heterogeneity underlying this functional diversity remains incompletely understood. We used snRNA-seq and in situ hybridization to define the transcriptional taxonomy of VP cell types in mice, macaques, and baboons. We found transcriptional conservation between all three species, within the broader neurochemical cell types. Unique dopaminoceptive and cholinergic subclusters were identified and conserved across both primate species but had no homolog in mice. This harmonized consensus VP cellular atlas will pave the way for understanding the structure and function of the VP and identified key neuropeptides, neurotransmitters, and neuro receptors that could be targeted within specific VP cell types for functional investigations.

2.
Nat Neurosci ; 27(1): 15-27, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057614

RESUMO

The striatal and pallidal complexes are basal ganglia structures that orchestrate learning and execution of flexible behavior. Models of how the basal ganglia subserve these functions have evolved considerably, and the advent of optogenetic and molecular tools has shed light on the heterogeneity of subcircuits within these pathways. However, a synthesis of how molecularly diverse neurons integrate into existing models of basal ganglia function is lacking. Here, we provide an overview of the neurochemical and molecular diversity of striatal and pallidal neurons and synthesize recent circuit connectivity studies in rodents that takes this diversity into account. We also highlight anatomical organizational principles that distinguish the dorsal and ventral basal ganglia pathways in rodents. Future work integrating the molecular and anatomical properties of striatal and pallidal subpopulations may resolve controversies regarding basal ganglia network function.


Assuntos
Corpo Estriado , Globo Pálido , Gânglios da Base/fisiologia , Neurônios , Neostriado , Vias Neurais/fisiologia
3.
Proc Natl Acad Sci U S A ; 120(31): e2302809120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37467285

RESUMO

Hypothalamic inflammation reduces appetite and body weight during inflammatory diseases, while promoting weight gain when induced by high-fat diet (HFD). How hypothalamic inflammation can induce opposite energy balance outcomes remains unclear. We found that prostaglandin E2 (PGE2), a key hypothalamic inflammatory mediator of sickness, also mediates diet-induced obesity (DIO) by activating appetite-promoting melanin-concentrating hormone (MCH) neurons in the hypothalamus in rats and mice. The effect of PGE2 on MCH neurons is excitatory at low concentrations while inhibitory at high concentrations, indicating that these neurons can bidirectionally respond to varying levels of inflammation. During prolonged HFD, endogenous PGE2 depolarizes MCH neurons through an EP2 receptor-mediated inhibition of the electrogenic Na+/K+-ATPase. Disrupting this mechanism by genetic deletion of EP2 receptors on MCH neurons is protective against DIO and liver steatosis in male and female mice. Thus, an inflammatory mediator can directly stimulate appetite-promoting neurons to exacerbate DIO and fatty liver.


Assuntos
Fígado Gorduroso , Obesidade , Camundongos , Ratos , Masculino , Feminino , Animais , Obesidade/genética , Melaninas/genética , Hipotálamo , Inflamação , Dieta Hiperlipídica/efeitos adversos , Neurônios , Mediadores da Inflamação , Prostaglandinas
4.
Obesity (Silver Spring) ; 31(4): 1000-1010, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811235

RESUMO

OBJECTIVE: High-fat diets (HFD) are thought to disrupt energy homeostasis to drive overeating and obesity. However, weight loss resistance in individuals with obesity suggests that homeostasis is intact. This study aimed to reconcile this difference by systematically assessing body weight (BW) regulation under HFD. METHODS: Male C57BL/6 N mice were fed diets with varying fat and sugar in different durations and patterns. BW and food intake were monitored. RESULTS: BW gain was transiently accelerated by HFD (≥40%) prior to plateauing. The plateau was consistent regardless of starting age, HFD duration, or fat/sugar content. Reverting to a low-fat diet (LFD) caused transiently accelerated weight loss, which correlated with how heavy mice were before the diet relative to LFD-only controls. Chronic HFD attenuated the efficacy of single or repetitive dieting, revealing a defended BW higher than that of LFD-only controls. CONCLUSIONS: This study suggests that dietary fat modulates the BW set point immediately upon switching from LFD to HFD. Mice defend a new elevated set point by increasing caloric intake and efficiency. This response is consistent and controlled, suggesting that hedonic mechanisms contribute to rather than disrupt energy homeostasis. An elevated floor of the BW set point after chronic HFD could explain weight loss resistance in individuals with obesity.


Assuntos
Dieta Hiperlipídica , Obesidade , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Peso Corporal , Obesidade/etiologia , Redução de Peso , Açúcares
5.
Mol Metab ; 36: 100977, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32277924

RESUMO

OBJECTIVE: Orexin (ORX) and melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus are critical regulators of energy homeostasis and are thought to differentially contribute to diet-induced obesity. However, it is unclear whether the synaptic properties of these cells are altered by obesogenic diets over time. METHODS: Rats and mice were fed a control chow or palatable high-fat diet (HFD) for various durations and then synaptic properties of ORX and MCH neurons were examined using exvivo whole-cell patch clamp recording. Confocal imaging was performed to assess the number of excitatory synaptic contacts to these neurons. RESULTS: ORX neurons exhibited a transient increase in spontaneous excitatory transmission as early as 1 day up to 1 week of HFD, which returned to control levels with prolonged feeding. Conversely, HFD induced a delayed increase in excitatory synaptic transmission to MCH neurons, which progressively increased as HFD became chronic. This increase occurred before the onset of significant weight gain. These synaptic changes appeared to be due to altered postsynaptic sensitivity or the number of active synaptic contacts depending on cell type and feeding duration. However, HFD induced no change in inhibitory transmission in either cell type at any time point. CONCLUSIONS: These results suggest that the effects of HFD on feeding-related neurons are cell type-specific and dynamic. This highlights the importance of considering the feeding duration for research and weight loss interventions. ORX neurons may contribute to early hyperphagia, whereas MCH neurons may play a role in the onset and long-term maintenance of diet-induced obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Região Hipotalâmica Lateral/metabolismo , Plasticidade Neuronal/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Metabolismo Energético , Homeostase/fisiologia , Região Hipotalâmica Lateral/efeitos dos fármacos , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melaninas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Orexinas/metabolismo , Técnicas de Patch-Clamp/métodos , Hormônios Hipofisários/metabolismo , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
J Physiol ; 596(2): 305-316, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29143330

RESUMO

KEY POINTS: High-fat diet consumption is a major cause of obesity. Orexin neurons are known to be activated by a high-fat diet and in turn promote further consumption of a high-fat diet. Our study shows that excitatory synapses to orexin neurons become amenable to long-term depression (LTD) after 1 week of high-fat diet feeding. However, this effect reverses after 4 weeks of a high-fat diet. This LTD may be a homeostatic response to a high-fat diet to curb the activity of orexin neurons and hence caloric consumption. Adaptation seen after prolonged high-fat diet intake may contribute to the development of obesity. ABSTRACT: Overconsumption of high-fat diets is one of the strongest contributing factors to the rise of obesity rates. Orexin neurons are known to be activated by a palatable high-fat diet and mediate the activation of the mesolimbic reward pathway, resulting in further food intake. While short-term exposure to a high-fat diet is known to induce synaptic plasticity within the mesolimbic pathway, it is unknown if such changes occur in orexin neurons. To investigate this, 3-week-old male rats were fed a palatable high-fat western diet (WD) or control chow for 1 week and then in vitro patch clamp recording was performed. In the WD condition, an activity-dependent long-term depression (LTD) of excitatory synapses was observed in orexin neurons, but not in chow controls. This LTD was presynaptic and depended on postsynaptic metabotropic glutamate receptor 5 (mGluR5) and retrograde endocannabinoid signalling. WD also increased extracellular glutamate levels, suggesting that glutamate spillover and subsequent activation of perisynaptic mGluR5 may occur more readily in the WD condition. In support of this, pharmacological inhibition of glutamate uptake was sufficient to prime chow control synapses to undergo a presynaptic LTD. Interestingly, these WD effects are transient, as extracellular glutamate levels were similar to controls and LTD was no longer observed in orexin neurons after 4 weeks of WD. In summary, excitatory synapses to orexin neurons become amenable to LTD under a palatable high-fat diet, which may represent a homeostatic mechanism to prevent overactivation of these neurons and to curtail high-fat diet consumption.


Assuntos
Dieta Hiperlipídica , Depressão Sináptica de Longo Prazo , Neurônios/fisiologia , Orexinas/metabolismo , Sinapses/fisiologia , Transmissão Sináptica , Animais , Masculino , Neurônios/citologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...