Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Res ; 28: 0028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715912

RESUMO

The field of immunotherapy, particularly immune checkpoint blockade (ICB), holds immense potential in mitigating the progression of cancer. However, the challenges of insufficient tumor antigen production and the immunosuppressive state in the tumor microenvironment substantially impede patients from deriving benefits. In this research, we present a tumor-microenvironment-modulation manganese-based nanosystem, PEG-MnMOF@PTX, aiming to improve the responsiveness of ICB. Under acidic conditions, the released Mn2+ accomplishes multiple objectives. It generates toxic hydroxyl radicals (•OH), together with the released paclitaxel (PTX), inducing immunogenic cell death of tumor cells and normalizing tumor blood vessels. Concurrently, it facilitates the in situ generation of oxygen (O2) from hydrogen peroxide (H2O2), ameliorating the microenvironmental immunosuppression and increasing the efficacy of immunotherapy. In addition, this study demonstrates that PEG-MnMOF@PTX can promote the maturation of dendritic cells and augment the infiltration of cytotoxic T lymphocytes through activation of the cyclic guanosine 5'-monophosphate-adenosine 5'-monophosphate synthase (cGAS) and interferon gene stimulator (STING) pathways, namely cGAS-STING pathways, thereby heightening the sensitivity to ICB immunotherapy. The findings of this study present a novel paradigm for the progress in cancer immunotherapy.

2.
Biomater Res ; 27(1): 9, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759928

RESUMO

BACKGROUND: Although programmed cell death protein 1 (PD-1)/ programmed cell death-ligand protein 1 (PD-L1) checkpoint blockade immunotherapy demonstrates great promise in cancer treatment, poor infiltration of T cells resulted from tumor immunosuppressive microenvironment (TIME) and insufficient accumulation of anti-PD-L1 (αPD-L1) in tumor sites diminish the immune response. Herein, we reported a drug-loaded microbubble delivery system to overcome these obstacles and enhance PD-L1 blockade immunotherapy. METHODS: Docetaxel (DTX) and imiquimod (R837)-loaded microbubbles (RD@MBs) were synthesized via a typical rotary evaporation method combined with mechanical oscillation. The targeted release of drugs was achieved by using the directional "bursting" capability of ultrasound-targeted microbubble destruction (UTMD) technology. The antitumor immune response by RD@MBs combining αPD-L1 were evaluated on 4T1 and CT26 tumor models. RESULTS: The dying tumor cells induced by DTX release tumor-associated antigens (TAAs), together with R837, promoted the activation, proliferation and recruitment of T cells. Besides, UTMD technology and DTX enhanced the accumulation of αPD-L1 in tumor sites. Moreover, RD@MBs remolded TIME, including the polarization of M2-phenotype tumor-associated macrophages (TAMs) to M1-phenotype, and reduction of myeloid-derived suppressor cells (MDSCs). The RD@MBs + αPD-L1 synergistic therapy not only effectively inhibited the growth of primary tumors, but also significantly inhibited the mimic distant tumors as well as lung metastases. CONCLUSION: PD-L1 blockade immunotherapy was enhanced by RD@MBs delivery system.

3.
Mater Today Bio ; 19: 100555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36793322

RESUMO

Immunotherapy shows great promise on treating tumors. However, insufficient antigen exposure and immunosuppressive tumor microenvironment (TME) caused by hypoxia impose a serial of constraints on the therapeutic efficacy. In this study, we developed an oxygen-carrying nanoplatform loaded with perfluorooctyl bromide (PFOB, a second-generation of perfluorocarbon-based blood substitute), IR780 (a photosensitizer) and imiquimod (R837, an immune adjuvant) to reprogram immunosuppressive TME and reinforce photothermal-immunotherapy. The obtained oxygen-carrying nanoplatforms (abbreviated as IR-R@LIP/PFOB) show highly efficient oxygen release behavior and excellent hyperthermia performance upon laser irradiation, thus achieving the attenuation of the inherent tumor hypoxia and the exposure of tumor associated antigens in situ, and transforming the immunosuppressive TME to an immunosupportive one. We found that the photothermal therapy of IR-R@LIP/PFOB together with anti-programmed cell death protein-1 (anti-PD-1) would elicit a robust antitumor immunity by increasing the tumor-infiltrating frequencies of cytotoxic CD8+ T cells and tumoricidal M1-phenotype macrophages, while reducing immunosuppressive M2-phenotype macrophages and regulatory T cells (Tregs). This study presents these oxygen-carrying IR-R@LIP/PFOB nanoplatforms are potent in removing some negative impacts of immunosuppressive TME caused by hypoxia, and suppressing tumor growth by initiating antitumor immune responses, especially in combination with anti-PD-1 immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA