Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608260

RESUMO

Hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein-ligand interactions. Currently, there is a growing need for breakthroughs in the application of HDX-MS analysis to protein-ligand interactions in highly complex biological samples such as cell lysates. However, HDX-MS analysis in such systems suffers from extreme spectral complexity as a result of high sample complexity and limited LC separation power due to the traditional use of short LC gradients. Here, we introduced protein thermal depletion (PTD) to reduce protein complexity in E. coli cell lysate for our subzero-temperature long gradient UPLC-HDX-MS platform (PTD-HDX-MS) to facilitate high-throughput analysis of protein-ligand interactions in cell lysates. We spiked bovine carbonic anhydrase II (CaII) and its inhibitor acetazolamide (AZM) into E. coli cell lysate as a model system in our study. We demonstrated that PTD at 60 °C greatly reduces protein complexity in cell lysates, while the AZM-targeted CaII complex remains in solution due to improved thermal stability upon binding. Using both PTD to reduce sample complexity and subzero-temperature long gradient UPLC to boost LC separation power, we successfully elucidated the interaction sites between AZM and CaII in E. coli cell lysate from the high-throughput HDX-MS analysis of thousands of deuterated peptides from hundreds of proteins. Our results highlight the great promise of the PTD-HDX-MS platform for the identification of ligand targets and characterization of protein-ligand interactions in highly complex biological samples such as cell lysates.

2.
J Proteome Res ; 22(2): 532-538, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695755

RESUMO

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful protein footprinting technique to study protein dynamics and binding; however, HDX-MS data analysis is often challenging and time-consuming. Moreover, the HDX community is expanding to investigate multiprotein and highly complex protein systems which further complicates data analysis. Thus, a simple, open-source software package designed to analyze large and highly complex protein systems is needed. In this vein, we have developed "The Deuterium Calculator", a Python-based software package for HDX-MS data analysis. The Deuterium Calculator is capable of differential and nondifferential HDX-MS analysis, produces standardized data files according to recommendations from the International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX) to increase transparency in data analysis, and generates Woods' plots for statistical analysis and data visualization. This standard output can be used to perform time dependent deuteration studies and for the study of protein folding kinetics or differential uptake. Moreover, The Deuterium Calculator is capable of performing these analyses on large HDX-MS data sets (e.g., LC-HDX-MS from cell lysate digest). The Deuterium Calculator is freely available for download at https://github.com/OUWuLab/TheDeuteriumCalculator.git. Data are available via ProteomeXchange with identifier PXD036813.


Assuntos
Medição da Troca de Deutério , Hidrogênio , Deutério , Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Software
3.
Int J Mass Spectrom ; 4812022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36211475

RESUMO

Cellular heterogeneity is commonly investigated using single-cell genomics and transcriptomics to investigate biological questions such as disease mechanism, therapeutic screening, and genomic and transcriptomic diversity between cellular populations and subpopulations at the cellular level. Single-cell mass spectrometry (MS)-based proteomics enables the high-throughput examination of protein expression at the single-cell level with wide applicability, and with spatial and temporal resolution, applicable to the study of cellular development, disease, effect of treatment, etc. The study of single-cell proteomics has lagged behind genomics and transcriptomics largely because proteins from single-cell samples cannot be amplified as DNA and RNA can using well established techniques such as PCR. Therefore, analytical methods must be robust, reproducible, and sensitive enough to detect the very small amount of protein within a single cell. To this end, nearly every step of the proteomics process has been extensively altered and improved to facilitate the proteomics analysis of single cells including cell counting and sorting, lysis, protein digestion, sample cleanup, separation, MS data acquisition, and data analysis. Here, we have reviewed recent advances in single-cell protein separation using nano reversed phase liquid chromatography (nRPLC) and capillary electrophoresis (CE) to inform application driven selection of separation techniques in the laboratory setting.

4.
Toxins (Basel) ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35202120

RESUMO

Anthrax vaccine adsorbed (AVA) containing protective antigen (PA) is the only FDA-approved anthrax vaccine in the United States. Characterization of the binding of AVA-induced anti-PA human antibodies against the PA antigen after vaccination is crucial to understanding mechanisms of the AVA-elicited humoral immune response. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is often coupled with a short liquid chromatography gradient (e.g., 5-10 min) for the characterization of protein interactions. We recently developed a long-gradient (e.g., 90 min), sub-zero temperature, ultra-high performance liquid chromatography HDX-MS (UPLC-HDX-MS) platform that has significantly increased separation power and limited back-exchange for the analysis of protein samples with high complexity. In this study, we demonstrated the utility of this platform for mapping antibody-antigen epitopes by examining four fully human monoclonal antibodies to anthrax PA. Antibody p1C03, with limited neutralizing activity in vivo, bound to a region on domain 1A of PA. p6C04 and p1A06, with no neutralizing activities, bound to the same helix on domain 3 to prevent oligomerization of PA. We found p6C01 strongly bound to domain 3 on a different helix region. We also identified a secondary epitope for p6C01, which likely leads to the blocking of furin cleavage of PA after p6C01 binding. This novel binding of p6C01 results in highly neutralizing activity. This is the first report of this distinct binding mechanism for a highly neutralizing fully human antibody to anthrax protective antigen. Studying such epitopes can facilitate the development of novel therapeutics against anthrax.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério
5.
Nano Lett ; 22(5): 2103-2111, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35166110

RESUMO

Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes. We found that the HEP-coating reduced the nanoparticle protein corona formation as efficiently as PEG coatings upon serum incubation. Liquid chromatography-mass spectrometry revealed the protein corona profiles. Heparosan-coated nanoparticles exhibited up to 230-fold higher uptake in certain innate immune cells, but not in other tested cell types, than PEGylated nanoparticles. No noticeable cytotoxicity was observed. Serum proteins did not mediate the high cell uptake of HEP-coated nanoparticles. Our work suggests that HEP polymers may be an effective surface modification technology for nanomedicines to safely and efficiently target certain innate immune cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Coroa de Proteína , Adsorção , Proteínas Sanguíneas , Dissacarídeos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros , Polissacarídeos , Prata
6.
Anal Chem ; 93(10): 4479-4487, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33646748

RESUMO

Single-cell capillary electrophoresis mass spectrometry (CE-MS) is a promising platform to analyze cellular contents and probe cell heterogeneity. However, current single-cell CE-MS methods often rely on offline microsampling processes and may demonstrate low sampling precision and accuracy. We have recently developed an electrospray-assisted device, spray-capillary, for low-volume sample extraction. With the spray-capillary, low-volume samples (pL-nL) are drawn into the sampling end of the device, which can be used directly for CE separation and online MS detection. Here, we redesigned the spray-capillary by utilizing a capillary with a <15 µm tapered tip so that it can be directly inserted into single cells for sample collection and on-capillary CE-MS analysis. We evaluated the performance of the modified spray-capillary by performing single-cell microsampling on single onion cells with varying sample injection times and direct MS analysis or online CE-MS analysis. We have demonstrated, for the first time, online sample collection and CE-MS for the analysis of single cells. This application of the modified spray-capillary device facilitates the characterization and relative quantification of hundreds of metabolites in single cells.


Assuntos
Eletroforese Capilar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas
7.
Anal Chim Acta ; 1143: 65-72, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33384131

RESUMO

Hydrogen deuterium exchange coupled with mass spectrometry (HDX-MS) is a powerful technique for the characterization of protein dynamics and protein interactions. Recent technological developments in the HDX-MS field, such as sub-zero LC separations, large-scale data analysis tools, and efficient protein digestion methods, have allowed for the application of HDX-MS to the analysis of multi protein systems in addition to pure protein analysis. Still, high-throughput HDX-MS analysis of complex samples is not widespread because the co-elution of peptides combined with increased peak complexity after labeling makes peak de-convolution extremely difficult. Here, for the first time, we evaluated and optimized long gradient subzero-temperature ultra-high-pressure liquid chromatography (UPLC) separation conditions for the HDX-MS analysis of complex protein samples such as E. coli cell lysate digest. Under the optimized conditions, we identified 1419 deuterated peptides from 320 proteins at -10 °C, which is about 3-fold more when compared with a 15-min gradient separation under the same conditions. Interestingly, our results suggested that the peptides eluted late in the gradient are well-protected by peptide-column interactions at -10 °C so that peptides eluted even at the end of the gradient maintain high levels of deuteration. Overall, our study suggests that the optimized, sub-zero, long-gradient UPLC separation is capable of characterizing thousands of peptides in a single HDX-MS analysis with low back-exchange rates. As a result, this technique holds great potential for characterizing complex samples such as cell lysates using HDX-MS.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Cromatografia Líquida de Alta Pressão , Escherichia coli , Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA