Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(9): 1458-1466, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38654437

RESUMO

ConspectusRecent years have witnessed the development of cluster materials as they are atomically precise molecules with uniform size and solution-processability, which are unattainable with traditional nanoparticles or framework materials. The motivation for studying Al(III) chemistry is not only to understand the aggregation process of aluminum in the environment but also to develop novel low-cost materials given its natural abundance. However, the Al-related clusters are underdeveloped compared to the coinage metals, lanthanides, and transition metals. The challenge in isolating crystalline compounds is the lack of an effective method to realize the controllable hydrolysis of Al(III) ions. Compared with the traditional hydrolysis of inorganic Al(III) salts in highly alkaline solutions and hydrolysis of aluminum trialkyl compounds conducted carefully in an inert operating environment, we herein developed an effective way to control the hydrolysis of aluminum isopropanol through an alcoxalation reaction. By solvothermal/low melting point solid melting synthesis and using "ligand aggregation, solvent regulation, and supracluster assembly" strategies, our laboratory has established an organic-inorganic hybrid system of aluminum oxo clusters (AlOCs). The employment of organic ligands promotes the aggregation and slows the hydrolysis of Al(III) ions, which in turn improves the crystallization process. The regulation of the structure types can be achieved through the selection of ligands and the supporting solvents. Compared with the traditional condensed polyoxoaluminates, we successfully isolated a broad range of porous AlOCs, including aluminum molecular rings and Archimedes aluminum oxo cages. By studying ring expansion, structural transformation, and intermolecular supramolecular assembly, we demonstrate unique and unprecedented structural controllability and assembly behavior in cluster science. The advancement of this universal synthetic method is to realize materials customization through modularly oriented supracluster assembly. In this Account, we will provide a clear-cut definition and terminology of "ligand aggregation, solvent regulation, and supracluster assembly". Then we will discuss the discovery in this area by using a strategy, such as aluminum molecular ring, ring size expansion, ring supracluster assembly, etc. Furthermore, given the internal and external pore structures, as well as the solubility and modifiability of the AlOCs, we will demonstrate their potential applications in both the solid and liquid phases, such as iodine capture, the optical limiting responses, and dopant in polymer dielectrics. The strategy herein can be applied to extensive cluster science and promote the research of main group element chemistry. The new synthetic method, fascinating clusters, and unprecedented assembly behaviors we have discovered will advance Al(III) chemistry and will also lay the foundation for functional applications.

2.
J Am Chem Soc ; 146(11): 7524-7532, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38451059

RESUMO

Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.

3.
Angew Chem Int Ed Engl ; 63(11): e202400161, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38247355

RESUMO

Crystal-liquid-glass, which combines the tunable properties of crystalline compounds with the processability of glasses, has emerged as a new class of materials for fabricating bulk-shapable devices in real applications. Inspired by the characteristics of deep eutectic solvent (DES) mixtures involving significant depressions in melting points compared to their neat constituent components, in this study, we designed and synthesized the first examples of meltable aluminum oxo clusters (AlOCs) via lattice doping with DESs at the molecular level. The abundant and strong hydrogen bonding between the aluminum molecular ring, DES components, and lattice solvents is postulated to be the root that affords melting point depressions and, thus, "melting" clusters. We prepared a transparent bubble-free glass film under autogenous pressure using a hot-press method. These cluster-based films exhibited luminescent and nonlinear optical properties similar to those of pristine crystalline compounds. Our study belongs to the interdisciplinary disciplines of chemistry and physics. It not only breaks the limitations of crystalline glass on metal and ligand types but also acts as a general guide for extending the range of meltable crystalline materials.

4.
Small ; : e2311083, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268236

RESUMO

Although metal-organic polyhedra (MOPs) expansion has been studied to date, it is still a rare occurrence for their porous intermolecular assembly for iodine capture. The major limitation is the lack of programmable and controllable methods for effectively constructing and utilizing the exterior cavities. Herein, the goal of programmable porous intermolecular assembly is realized in the first family of aluminum oxo polyhedrons (AlOPs) using ligands with directional H-bonding donor/acceptor pairs and auxiliary alcohols as structural regulation sites. The approach has the advantage of avoiding the use of expensive edge-directed ditopic and face-directed tritopic ligands in the general synthesis strategy of MOPs. Combining theoretical calculations and experiments, the intrinsic relationship is revealed between alcohol ligands and the growth mechanism of AlOPs. The maximum I2 uptake based on the mass gain during sorption corresponds to 2.35 g g-1 , representing the highest reported I2 sorption by an MOP. In addition, it can be easily regenerated and maintained the iodine sorption capacity, revealing its further potential application. This method of constructing stable and programmable porous materials will provide a new way to solve problems such as radionuclide capture.

5.
Adv Sci (Weinh) ; 11(2): e2305833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973555

RESUMO

The motivation for making heterometallic compounds stemmed from their emergent synergistic properties and enhanced capabilities for applications. However, the atomically precisely controlled synthesis of heterometallic compounds remains a daunting challenge of the complications that arise when applying several metals and linkers. Herein, a stepwise and controlled method is reported for the accurate addition of second and third metals to homometallic aluminum macrocycles based on the synergistic coordination and hard-soft acid-base theory. These heterometallic compounds showed a good Lewis acid catalytic effect, and the addition of hetero-metals significantly improved the catalytic effect and rate, among that the conversion rate of compound AlOC-133 reached 99.9% within half an hour. This method combines both the independent controllability of stepwise assembly with the universality of one-step methods. Based on the large family of clusters, the establishment of this method paves the way for the controllable and customized molecular-level synthesis of heterometallic materials and creates materials customized for preferential application.

6.
Angew Chem Int Ed Engl ; 62(49): e202309971, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37877336

RESUMO

Clusters that can be experimentally precisely characterized and theoretically accurately calculated are essential to understanding the relationship between material structure and function. Here, we propose the concept of "supraclusters", which aim to connect "supramolecules" and "suprananoparticles" as well as reveal the unique assembly behavior of "supraclusters" with nanoparticle size at the molecular level. The implementation of supraclusters is full of challenges due to the difficulty in satisfying the ordered connectivity of clusters due to their abundant and dispersed hydrogen bonding sites. By solvothermal synthesis under a high catechol (H2 CATs) content, we successfully isolated a series of triangular {Al6 M3 } cluster compounds possessing brucite-like structural features. Interestingly, eight {Al6 M3 } clusters form 72-fold strong hydrogen bonding truncatedhexahedron Archimedean {Al6 M3 }8 supracluster cage (abbreviated as H-tcu). Surprisingly, the solution stability of the H-tcu was further proved by electrospray ionization mass spectrometry (ESI-MS) characterization. Therefore, it is not difficult to explain the reason for assembly of H-tcu into edge-directed and vertex-directed isomers. These porous supraclusters can be obtained by scale-up synthesis and exhibit a noticeable catalysis effect towards the condensation of acetone and p-nitrobenzaldehyde. As an intermediate state of supramolecule and suprananoparticle, the supracluster assembly can enrich the cluster chemistry and bring new structural types.

7.
Adv Mater ; 35(49): e2306260, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37660306

RESUMO

The dielectric layer is crucial in regulating the overall performance of field-effect transistors (FETs), the key component in central processing units, sensors, and displays. Despite considerable efforts being devoted to developing high-permittivity (k) dielectrics, limited progress is made due to the inherent trade-off between dielectric constant and loss. Here, a solution is presented by designing a monodispersed disk-shaped Ce-Al-O-macrocycle as a dopant in polymer dielectrics. The molecule features a central Ce(III) core connected with eight Al atoms through sixteen bridging hydroxyls and eight 3-aminophenyl peripheries. The incorporation of this macrocycle in polymer dielectrics results in an up to sevenfold increase in dielectric constants and up to 89% reduction in dielectric loss at low frequencies. Moreover, the leakage-current densities decrease, and the breakdown strengths are improved by 63%. Relying on the above merits, FETs bearing cluster-doped polymer dielectrics give near three-orders source-drain current increments while maintaining low-level leakage/off currents, resulting in much higher charge-carrier mobilities (up to 2.45 cm2  V-1  s-1 ) and on/off ratios. This cluster-doping strategy is generalizable and shows great promise for ultralow-power photoelectric synapses and neuromorphic retinas. This work successfully breaks the trade-off between dielectric constant and loss and offers a unique design for polymer composite dielectrics.

8.
Inorg Chem ; 62(21): 8300-8308, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37196239

RESUMO

The interest in cluster chemistry lies not only in the development of new types of geometric structures but also in the higher-level connectivity and assembly of clusters at the supramolecular level. Here, we report a novel windmill-like Al10 cluster and consider this geometrically unique cluster as an anionic node assembled together with different cationic guests such as imidazolium and guanidinium. These guests with different hydrogen-bond angles can help to obtain a series of diverse hydrogen-bonding networks and then manipulate the stacking mode of hosts and guests. Furthermore, we realized a supramolecular approach to fine-tune the optical limiting properties of the cluster. This work not only enriches the host-guest chemistry of ionic windmill-like clusters but also opens up more possibilities for aluminum oxo cluster-based hydrogen-bonded frameworks.

9.
Chem Sci ; 14(20): 5396-5404, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37234899

RESUMO

Metal molecular rings are a class of compounds with aesthetically pleasing symmetry and fundamentally useful properties. The reported work generally focuses on the ring center cavity, and there is little known about those on the ring waist. Herein, we report the discovery of porous aluminum molecular rings and their performance and contribution to the cyanosilylation reaction. We develop a facile ligand induced aggregation and solvent regulation strategy towards AlOC-58NC and AlOC-59NT with high purity, high yield (75% and 70%, respectively) and gram-level scale-up. These molecular rings exhibit a "two-tier" pore feature involving the general central cavity and newly observed equatorial semi-open cavities. AlOC-59NT with two types of one-dimensional channels showed good catalytic activity. The interaction of the aluminum molecular ring catalyst with the substrate has been crystallographically characterized and theoretically confirmed, showing a ring adaptability process that involves the capture and binding of the substrate. This work provides new ideas for the assembly of porous metal molecular rings and to understand the overall reaction pathway involving aldehydes and is expected to inspire the design of low-cost catalysts through structural modifications.

10.
Chem Commun (Camb) ; 59(23): 3411-3414, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36852667

RESUMO

Presented herein is an example of the conversion of an aluminum oxo cluster (AlOC) to an aluminum oxo cluster organic cage (AlOCOC). We successfully synthesized the first example of an aluminum cluster-based organic cage-Al12 tetrahedral cage via an Al3 cluster. The use of 4-pyrazolecarboxylic acid plays an important role in the construction of the organic cage. Due to the presence of partially deprotonated ligands, the hydrogen-bonding interactions between the discrete tetrahedra generate porous supramolecular structures. Considering the high porosity and the abundant N-H sites, we further investigated the performance of the material towards iodine capture.

11.
Chemistry ; 29(2): e202202638, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36180419

RESUMO

The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.


Assuntos
Iodo , Estruturas Metalorgânicas , Neoplasias da Glândula Tireoide , Humanos , Radioisótopos do Iodo , Sítios de Ligação
12.
Nat Commun ; 13(1): 6632, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333329

RESUMO

In this paper, we report a unique type of core-shell crystalline material that combines an inorganic zeolitic cage structure with a macrocyclic host arrangement and that can remove trace levels of iodine from water effectively. These unique assemblies are made up of an inorganic Archimedean truncatedhexahedron (tcu) polyhedron in the kernel which possesses six calixarene-like shell cavities. The cages have good adaptability to guests and can be assembled into a series of supramolecular structures in the crystalline state with different lattice pore shapes. Due to the unique core-shell porous structures, the compounds are not only stable in organic solvents but also in water. The characteristics of the cages enable rapid iodine capture from low concentration aqueous I2/KI solutions (down to 4 ppm concentration). We have studied the detailed process and mechanism of iodine capture and aggregation at the molecular level. The facile synthesis, considerable adsorption capacity, recyclability, and ß- and γ-radiation resistance of the cages should make these materials suitable for the extraction of iodine from aqueous effluent streams (most obviously, radioactive iodide produced by atomic power generation).

13.
Chem Sci ; 13(19): 5693-5700, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35694349

RESUMO

Heterometallic cluster-based framework materials are of interest in terms of both their porous structures and multi-metallic reactivity. However, such materials have not yet been extensively investigated because of difficulties in their synthesis and structural characterization. Herein, we reported the designable synthesis of atomically precise heterometallic cluster-based framework compounds and their application as catalysts in aldol reactions. By using the synergistic coordination protocol, we successfully isolated a broad range of compounds with the general formula, [Al4M4O4(L)12(DABCO)2] (L = carboxylates; DABCO = 1,4-diazabicyclo[2.2.2]-octane; M2+ = Co2+, Mn2+, Zn2+, Fe2+, Cd2+). The basic heterometallic building blocks contain unprecedented main-group γ-alumina moieties and surrounding unsaturated transition metal centers. Interestingly, the porosity and interpenetration of these frameworks can be rationally regulated through the unprecedented strategy of increment of the metal radius in addition to general introduction of sterically bulky groups on the ligand. Furthermore, these porous materials are effective catalysts for aldol reactions. This work provides a catalytic molecular model platform with accurate molecular bonding between the supporters and catalytically active metal ions.

14.
Angew Chem Int Ed Engl ; 61(14): e202116563, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35112457

RESUMO

Crystalline cluster materials, a class of functional motif aggregations, provide a great opportunity for tuning the properties stemming from the flexible and accurate variation of inorganic and organic compositions. In this study, we demonstrate the effects of functional ligand and ring size regulation on the structures and third-order nonlinear optical (NLO) properties. Revealed by the single-crystal X-ray analysis results, aluminum molecular ring expansion is achieved by 2×9 and 3×6 strategies. In terms of the given organic shells, we further tuned the aluminum molecular ring sizes from 3.0 nm to 1.7 nm. The picosecond Z-scan measurements results revealed that the third-order NLO performances do not only depend on the general conjugate interactions but are also related to hydrogen bonding, polarizability, and ring sizes. The large nonlinear absorption coefficient and onset prove that the observed samples are promising candidates for the field of nonlinear optics.

15.
Chem Commun (Camb) ; 57(95): 12820-12823, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34786582

RESUMO

Presented herein is the synthesis, structure, and optical properties of the aluminum(III)-zinc(II) heterometallic compound AlOC-57. This compound was found to form a large unit cell (approximately sixteen thousand atoms) and a three-shell nano-plate structure. Based on the Z-scan patterns, the third-order nonlinear optical response of the heterometallic nano-plate was mainly attributed to its nonlinear absorption (reverse saturable absorption).

16.
Dalton Trans ; 50(46): 17202-17207, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34783818

RESUMO

A range of titanium compounds containing the naturally occurring dyes quinizarin (QH2) and alizarin (AH2) was synthesized and structurally characterized in the solid state. Among these is the first examples of a discrete metallocyclic arrangement formed exclusively using quinizarin ligands and the first examples of lanthanide containing titanium compounds of the alizarin family of ligands.

17.
Angew Chem Int Ed Engl ; 60(39): 21426-21433, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34314080

RESUMO

Although numerous adsorbent materials have been reported for the capture of radioactive iodine, there is still demand for new absorbents that are economically viable and can be prepared by reliable synthetic protocols. Herein, we report a coordination-driven self-assembly strategy towards adsorbents for the sequential confinement of iodine molecules. These adsorbents are versatile heterometallic frameworks constructed from aluminum molecular rings of varying size, flexible copper ions, and conjugated carboxylate ligands. Additionally, these materials can quickly remove iodine from cyclohexane solutions with a high removal rate (98.8 %) and considerable loading capacity (555.06 mg g-1 ). These heterometallic frameworks provided distinct pore sizes and binding sites for iodine molecules, and the sequential confinement of iodine molecules was supported by crystallographic data. This work not only sets up a bridge between molecular rings and infinite porous networks but also reveals molecular details for the underlying host-guest binding interactions at crystallographic resolution.

18.
Inorg Chem ; 60(10): 7089-7093, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33926193

RESUMO

Aluminum is an important component for luminescence. However, the fluorescent aluminum complex with unambiguous structural information is still limited. Herein, we report a series of fluorescence aluminum oxo clusters (AlOCs). By introducing an additional coordination site to the aromatic conjugation ligand, cluster nuclearity increment and fluorescence variation are observed. Al8(OH)2(µ4-O)2(1-NA)2(OEt)16 (AlOC-41, 1-NA = 1-naphthoic acid, OEt = ethanol) is made up of two tetrahedral subunits. By introducing an additional coordination site to the aromatic conjugation ligand, we isolate a high nuclearity compound Al10(µ3-O)2(3-HNA)2(OEt)22 (AlOC-47, 3-HNA = 3-hydroxy-2-naphthoic acid). Correspondingly, their luminescence performance is different (blue fluorescence in AlOC-41 and green in AlOC-47). Present herein is a platform to illustrate the relationship between synthesis, structure, and fluorescence properties.

19.
J Am Chem Soc ; 143(5): 2325-2330, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33443999

RESUMO

The effective capture and storage of radioiodine are of worldwide interest for sustainable nuclear energy. However, the direct observation of ambiguous binding sites that accommodate iodine is extremely rare. We presented herein a crystallographic visualization of the binding of iodine within mesoporous cages assembled from aluminum molecular rings. These nanocages are formed through π-π interactions between adjacent aluminum molecular rings. Compared with the general nanotubes arrangement, the supramolecular nanocage isomer exhibits better iodine adsorption behavior. The robust molecular nanocages demonstrate a high iodine vapor saturation uptake capacity of 50.3 wt % at 80 °C. Furthermore, the resulting adsorbent can be recycled. Single-crystal X-ray diffraction reveals binding sites of molecular I2 within the pores of the phenyl-based linkers stabilized by the strong I···π interactions. These compounds represent an excellent model to deduce the trapping mechanism of guest molecules interacting with the host. In addition, this work develops a promising cluster-based aluminum material as iodine adsorbents.

20.
Chem Commun (Camb) ; 57(16): 2085-2088, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33514962

RESUMO

Present herein is the first example of aluminium nanoring assembly by fatty acids. And the auxiliary alcohol sites can be modified either by monohydric alcohols (AlOC-33 to AlOC-35) or diols (AlOC-36 to AlOC-38). The monohydric alcohol modified ten-membered aluminium (Al10) rings are coplanar, while the diol modified ones possess a saddle-shaped configuration. Interestingly, the diol modified Al10 ring (AlOC-36) can convert into a coplanar ring (AlOC-33-B). AlOC-33-B possesses a similar molecular structure but a different supramolecular structure with AlOC-33. The structural transformation is confirmed to be a thermodynamically spontaneous process through density-functional theory (DFT) calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...