Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039964

RESUMO

Vicia sativa ssp. amphicarpa is a unique forage crop capable of simultaneously producing fruits above and below ground, representing a typical amphicarpic plant. In this study, we sequenced and assembled seven pseudo-chromosomes of the genome of V. sativa ssp. amphicarpa (n = 7) yielding a genome size of 1.59 Gb, with a total annotation of 48 932 protein-coding genes. Long terminal repeat (LTR) elements constituted 62.28% of the genome, significantly contributing to the expansion of genome size. Phylogenetic analysis revealed that the divergence between V. sativa ssp. amphicarpa and V. sativa was around 0.88 million years ago (MYA). Comparative transcriptomic and metabolomic analysis of aerial and subterranean pod shells showed biosynthesis of terpenoids in the subterranean pod shells indicating a correlation between the antimicrobial activity of subterranean pod shells and the biosynthesis of terpenoids. Furthermore, functional validation indicates that overexpression of VsTPS5 and VsTPS16 enhances terpenoid biosynthesis for antibacterial activity. Metabolomic analysis suggests the involvement of terpenoids in the antimicrobial properties of subterranean pod shells. Deciphering the genome of V. sativa ssp. amphicarpa elucidated the molecular mechanisms behind the antimicrobial properties of subterranean fruits in amphicarpic plants, providing valuable insights for the study of amphicarpic plant biology.

2.
Mol Plant ; 17(8): 1183-1203, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38859588

RESUMO

Root nodule symbiosis (RNS) between legumes and rhizobia is a major source of nitrogen in agricultural systems. Effective symbiosis requires precise regulation of plant defense responses. The role of the defense hormone jasmonic acid (JA) in the immune response has been extensively studied. Current research shows that JA can play either a positive or negative regulatory role in RNS depending on its concentration, but the molecular mechanisms remain to be elucidated. In this study, we found that inoculation with the rhizobia Sm1021 induces the JA pathway in Medicago truncatula, and blocking the JA pathway significantly reduces the number of infection threads. Mutations in the MtMYC2 gene, which encodes a JA signaling master transcription factor, significantly inhibited rhizobia infection, terminal differentiation, and symbiotic cell formation. Combining RNA sequencing and chromatin immunoprecipitation sequencing, we discovered that MtMYC2 regulates the expression of nodule-specific MtDNF2, MtNAD1, and MtSymCRK to suppress host defense, while it activates MtDNF1 expression to regulate the maturation of MtNCRs, which in turn promotes bacteroid formation. More importantly, MtMYC2 participates in symbiotic signal transduction by promoting the expression of MtIPD3. Notably, the MtMYC2-MtIPD3 transcriptional regulatory module is specifically present in legumes, and the Mtmyc2 mutants are susceptible to the infection by the pathogen Rhizoctonia solani. Collectively, these findings reveal the molecular mechanisms of how the JA pathway regulates RNS, broadening our understanding of the roles of JA in plant-microbe interactions.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Medicago truncatula , Oxilipinas , Nódulos Radiculares de Plantas , Simbiose , Medicago truncatula/microbiologia , Medicago truncatula/genética , Medicago truncatula/metabolismo , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Rhizobium/fisiologia
3.
Sci Total Environ ; 900: 165814, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37517723

RESUMO

The primary utilization strategy for meadow grasslands on the Qinghai-Tibet Plateau (QTP) is livestock grazing. This practice is considered as one of the major drivers of plant-associated bacterial community construction and changes in soil properties. The species of Kobresia humilis is considered as the most dominant one in grasslands. However, how different grazing practices affect the phyllosphere and rhizosphere bacterial communities of K. humilis is unknown. To address this issue, the effects of the grazing enclosure (GE), single-species grazing (YG and SG, representing yak only and sheep only, respectively), and different ratios of grazing (ratio of yak to sheep is 1:2, 1:4, and 1:6, represented by MG1:2, MG1:4, and MG1:6, respectively) on the dominant plant of K. humilis, it's phyllosphere and rhizosphere bacteria, and soil properties were investigated using artificially controlled grazing and grazing enclosure. Our data showed that grazing enclosure enhanced vegetation coverage, and rhizosphere bacterial richness and diversity, while reduced plant number and bacterial network stability of K. humilis. The NO3--N, K+, and Cl- concentrations were lower under grazing compared to GE. SG reduced the concentration of NH4+-N, TN, K+, and Na+ compared to YG. Moderate grazing intensity had a lower relative abundance of the r-strategists (Bacteroidota and Gammaproteobacteria) with higher bacterial network stability. Yak and sheep grazing showed reversed impacts on the bacterial network stability between the phyllosphere and rhizosphere of K. humilis. Proteobacteria and Actinobacteriota were identified in the molecular ecological network analysis as keystone taxa in the phyllosphere and rhizosphere networks, respectively, under all treatments. This study explained why sheep grazing has more adverse effects on grazing-tolerant grass species, K. humilis, than yak grazing, and will contribute to a better understanding of the impacts of different grazing practices and grazing enclosure on alpine grassland ecosystems on the QTP.


Assuntos
Carex (Planta) , Ecossistema , Animais , Ovinos , Pradaria , Rizosfera , Tibet , Bactérias , Solo
4.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553683

RESUMO

Rhizoctonia solani is a species complex composed of many genetically diverse anastomosis groups (AG) and their subgroups. It causes economically important diseases of soybean worldwide. However, the global genetic diversity and distribution of R. solani AG associated with soybean are unknown to date. In this study, the global genetic diversity and distribution of AG associated with soybean were investigated based on rDNA-ITS sequences deposited in GenBank and published literature. The most prevalent AG, was AG-1 (40%), followed by AG-2 (19.13%), AG-4 (11.30%), AG-7 (10.43%), AG-11 (8.70%), AG-3 (5.22%) and AG-5 (3.48%). Most of the AG were reported from the USA and Brazil. Sequence analysis of internal transcribed spacers of ribosomal DNA separated AG associated with soybean into two distinct clades. Clade I corresponded to distinct subclades containing AG-2, AG-3, AG-5, AG-7 and AG-11. Clade II corresponded to subclades of AG-1 subgroups. Furthermore, AG and/or AG subgroups were in close proximity without corresponding to their geographical origin. Moreover, AG or AG subgroups within clade or subclades shared higher percentages of sequence similarities. The principal coordinate analysis also supported the phylogenetic and genetic diversity analyses. In conclusion, AG-1, AG-2, and AG-4 were the most prevalent AG in soybean. The clade or subclades corresponded to AG or AG subgroups and did not correspond to the AG's geographical origin. The information on global genetic diversity and distribution will be helpful if novel management measures are to be developed against soybean diseases caused by R. solani.


Assuntos
Variação Genética , Glycine max , Variação Genética/genética , Glycine max/genética , Filogenia , Genética Populacional , DNA Ribossômico
5.
Front Microbiol ; 13: 961794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033855

RESUMO

Alfalfa plays a significant role in the pasture ecosystems of China's north, northeast, and northwest regions. It is an excellent forage for livestock, improves soil structure, prevents soil erosion, and has ecological benefits. Presently root rot is a significant threat to the alfalfa productivity because of the survival of the pathogens as soil-borne and because of lack of microbial competition in the impoverished nutrient-deficient soils and resistant cultivars. Furthermore, these regions' extreme ecological and environmental conditions predispose alfalfa to root rot. Moisture and temperature, in particular, have a considerable impact on the severity of root rot. Pathogens such as Fusarium spp. and Rhizoctonia solani are predominant, frequently isolated, and of major concern. These pathogens work together as disease complexes, so finding a host genotype resistant to disease complexes is challenging. Approaches to root rot control in these regions include mostly fungicides treatments and cultural practices and very few reports on the usage of biological control agents. As seed treatment, fungicides such as carbendazim are frequently used to combat root rot; however, resistance to fungicides has arisen. However, breeding and transgenic approaches could be more efficient and sustainable long-term control strategies, especially if resistance to disease complexes may be identified. Yet, research in China is mainly limited to field investigation of root rot and disease resistance evaluation. In this review, we describe climatic conditions of pastoral regions and the role of alfalfa therein and challenges of root rot, the distribution of root rot in the world and China, and the impact of root rot pathogens on alfalfa in particular R. solani and Fusarium spp., effects of environmental factors on root rot and summarize to date disease management approach.

6.
J Fungi (Basel) ; 8(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35887429

RESUMO

Fusarium oxysporum f. sp. lycopersici (Fol) causes vascular wilt disease in tomato. Upon colonization of the host, Fol secretes many small effector proteins into the xylem sap to facilitate infection. Besides known SIX (secreted in xylem) proteins, the identity of additional effectors that contribute to Fol pathogenicity remains largely unexplored. We performed a deep RNA-sequencing analysis of Fol race 2-infected tomato, used the sequence data to annotate a published genome assembly generated via PacBio SMRT sequencing of the Fol race 2 reference strain Fol4287, and analysed the resulting transcriptome to identify Fol effector candidates among the newly annotated genes. We examined the Fol-infection expression profiles of all 13 SIX genes present in Fol race 2 and identified 27 new candidate effector genes that were likewise significantly upregulated upon Fol infection. Using Agrobacterium-mediated transformation, we tested the ability of 22 of the new candidate effector genes to suppress or induce cell death in leaves of Nicotiana benthamiana. One effector candidate designated Fol-EC19, encoding a secreted guanyl-specific ribonuclease, was found to trigger cell death and two effector candidates designated Fol-EC14 and Fol-EC20, encoding a glucanase and a secreted trypsin, respectively, were identified that can suppress Bax-mediated cell death. Remarkably, Fol-EC14 and Fol-EC20 were also found to suppress I-2/Avr2- and I/Avr1-mediated cell death. Using the yeast secretion trap screening system, we showed that these three biologically-active effector candidates each contain a functional signal peptide for protein secretion. Our findings provide a basis for further understanding the virulence functions of Fol effectors.

7.
Neuropsychiatr Dis Treat ; 18: 1363-1374, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818374

RESUMO

Purpose: This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. Methods: The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. Results: Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). Conclusion: Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.

8.
Chemosphere ; 297: 134114, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35240149

RESUMO

Plant diseases caused by phytopathogens are a severe threat to global food production. Management of plant diseases mostly rely on the application of pesticides which have several adverse effects on the ecosystem. Innovative and high-performance diagnostic tools are useful for the early detection of phytopathogens. Emerging role of metal and metal oxides nanoparticles (NPs) in plant disease diagnostics to combat crop diseases has been described. These NPs constitute new weapons against plant pathogens and facilitate the early diagnosis/management of crop diseases specifically in resource-poor conditions. The interactions between NPs, phytopathogens and plants showed great diversity and multiplicity which reduces chances of the development of resistant pathogen strains. The present article discusses the available literature as well as challenges and research gaps that are essential in the successful utilization of metal and metal oxide NPs for precise and timely detection and management of plant diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ecossistema , Metais , Nanopartículas/toxicidade , Óxidos , Doenças das Plantas , Plantas
9.
Front Microbiol ; 12: 664385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335495

RESUMO

Fusarium oxysporum f. sp. medicaginis (Fom) and Rhizoctonia solani (Rs) are the major soil-borne fungal pathogens that pose severe threats to commercial alfalfa production in China. However, the effects of Fom and Rs co-infection on alfalfa and whether co-infection alters disease resistance responses among diverse varieties remain unknown. A collection of 80 alfalfa varieties (Medicago sativa) originated from seven countries were used to study the effects of Fom and Rs co-infection on alfalfa and host resistance responses. The co-infection resulted in more severe disease and reductions in growth and biomass allocation across varieties in comparison with either single infection by Fom or Rs; in addition, root morphology was much more strongly altered by the co-infection. Principal component analysis based on all plant traits showed that varieties under the co-infection were related to the single infection by Rs, being separated from Fom, and hierarchical clustering found differential response patterns among varieties upon co-infection compared with either single infection, with most varieties being highly susceptible to the co-infection. Furthermore, varieties that were most resistant to either single infection were not effective to co-infection, and there was no individual variety with resistance to both pathogens singly and co-infected. This study reveals for the first time that the co-infection by Fom and Rs alters disease resistance responses among diverse alfalfa varieties and provides useful information for developing alfalfa varieties with resistance to the co-occurrence of different soil-borne pathogens.

10.
Plant Dis ; 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32762326

RESUMO

Alfalfa (Medicago sativa) is the largest grown pasture crop in China due to its economic and ecological importance. During the summer season from June to August in 2018, stunted plants was frequently observed in alfalfa fields that have been established for two years in Jinchang, Gansu Province. The disease incidence of root rot ranged from 40% to 50%. Taproots of stunted plants showed red-brown to dark brown discolorations, and lateral roots were poorly developed. Shoots wilted with rotted taproots and lateral roots in severely affected plants. Twenty symptomatic plants were collected and transported to the laboratory for pathogen isolations. Roots were washed under running tap water, cut into 2 to 3 mm pieces (40 pieces each plant), and then sterilized in 75% ethanol for 2 mins followed by three times washing with autoclaved distilled water. Surface dried pieces on autoclaved filter papers were put onto water agar and also a Phytophthora selective medium P5ARP(H) (Jeffers and Martin 1986). The plates were incubated at 22°C for 3 to 5 days and then the growing hypha were subcultured onto potato dextrose agar (PDA). Thirty-two Phytophthora-like isolates were obtained and showed similar morphologies on PDA. Five isolates picked randomly were purified by single-hyphal-tip and plugs (4 to 5 mm) from PDA cultures were incubated in petri dishes with autoclaved distilled water at 22°C for 5 days. Sporangia, chlamydospores and oospores were examined. Sporangia were usually ovoid and sometimes appeared ellipsoid, with the length of 30.5-39.1 µm and width of 23.4-27.8 µm. The diameter of chlamydospores was 29.6 to 42.5µm. Oospores had a diameter of 23.6 to 30.2 µm. The isolates were tentatively identified as P. cactorum based on these morphology characteristics (Montealegre et al. 2016). DNA of these isolates were extracted and PCR amplifications of the rDNA ITS region and cytochrome oxidase subunit I (Cox I) (Kroon et al. 2004) were conducted. Sequences of these isolates were then compared with reference sequences in GenBank using BLAST search. The 866-bp ITS sequences had a sequence identity of 99% to 100% with P. cactorum (e.g. accession nos. EU662221, KJ128036). In addition, the 663-bp CoxI sequences showed 100% sequence identity with three P. cactorum isolates (accession nos. AB688156, HQ708234, EU660851). The ITS and CoxI sequences of one representative isolate Phy.c2 have been deposited in GenBank with the accession no. MT280033 and MT344138, respectively. Pathogenicity of the five isolates (Phy.c1-Phy.c5) were determined on two-week-old alfalfa seedlings (cv. Longdong) grown from seeds. Inoculums were prepared by subculturing agar plugs from edges of PDA cultures into the flask with autoclaved millet seeds, and incubated at 22°C in darkness for two weeks and shaken by hand every two days to ensure uniform colonization. Seedlings were transplanted into pots (12 cm x 12 cm) filled with autoclaved potting mix infested with millet-seed inoculum of each isolate at a rate of 0.5% (w/w). Control seedlings for comparison were transplanted into pots with uninfested potting mix. There were five seedlings per pot and twelve replicate pots for both inoculated and noninoculated treatments, and pots were kept under controlled environment room (22°C, 12 h photoperiod and 65% relative humidity) that were watered every two days to free draining. 87%~92% of the inoculated plants showed stunted symptoms with poorly developed and brown-discoloured roots three weeks after inoculation while the control plants were healthy with no root disease symptoms. To fulfil Koch's postulates, re-isolated cultures from discoloured root tissues were confirmed as the inoculated isolates by morphological examination and ITS sequencing. The five-purified isolates were submitted to the Grassland Culture Collection Center, Lanzhou University, with the accession nos. LZU-MsR-Phy.c1-Phy.c5. To our knowledge, this is the first report of P. cactorum as a pathogen of root rot on alfalfa in China. Phytophthora spp. has been reported causing root rot on alfalfa in America, Australia and Canada, and other legumes such as chickpea, and many other crops worldwide (Musial et al. 2005; Tan and Tan 1986; Vandemark and Barker 2003), and P. cactorum was reported as a root rot pathogen on lavender in China (Chen et al. 2017). P. cactorum may be a significant pathogen associated with root rot in major commercial alfalfa-producing areas in China where are based on flood-irrigation during the growth season.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32560083

RESUMO

Mining causes serious destruction of the surface morphology and soil structure of lands, and vegetation restoration on post-mining lands provides an effective way for soil and water conservation. To determine the influence of mining and vegetation restoration on soil properties in the eastern margin of the Qinghai-Tibet Plateau, four land sites, including two vegetation restoration sites (restorated by Elymus nutans and Picea crassifolia, respectively), one non-vegetated mining site and one native grassland site, were selected. Fifty-two topsoil (0-10) samples were collected from these four sites, and then soil properties, trace metals and soil enzyme activities were analyzed. The results showed that there was an increase in soil pH (>8.0) after mining, while vegetation restoration decreased the soil pH compared with native grassland; the soil organic matter and total nitrogen in the site restored with E. nutans increased by 48.8% and 25.17%, respectively, compared with the site restored with P. crassifolia. The soil enzyme activities decreased after mining, and there were no significant increases in urease, phosphatase, ß-glucosidase and ß-1,4-N-acetylglucosaminidase activities after five years of restoration. In addition, the contents of soil trace metals (cadmium, chromium, mercury, lead and zinc) after mining were lower than the Chinese threshold (GB 15618/2018), but the content of arsenic in non-vegetated soil and P. crassifolia-restored soil exceeded the threshold by 22.61 times and 22.86 times, respectively. Therefore, As-contaminated land areas should be accurately determined and treated in a timely way to prevent arsenic from spreading, and plant species with tolerance to alkaline soil should be selected for vegetation restoration on post-mining lands.


Assuntos
Mineração , Solo , Oligoelementos , Nitrogênio , Tibet
12.
Front Neurosci ; 13: 806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427923

RESUMO

Neuroimaging studies have shown that autism spectrum disorders (ASDs) may be associated with abnormalities in brain structures and functions at rest as well as during cognitive tasks. However, it remains unclear if functional connectivity (FC) of all brain neural networks is also changed in these subjects. In this study, we acquired functional magnetic resonance imaging scans from 93 children with ASD and 79 matched healthy subjects. Group independent component analysis was executed for all of the participants to estimate FC. One-sample t-tests were then performed to obtain the networks for each group. Group differences in the different brain networks were tested using two-sample t-tests. Finally, relationships between abnormal FC and clinical variables were investigated with Pearson's correlation analysis. The results from one-sample t-tests revealed nine networks with similar spatial patterns in these two groups. When compared with the controls, children with ASD showed increased connectivity in the right dorsolateral superior frontal gyrus and left middle frontal gyrus (MFG) within the occipital pole network. Children with ASD also showed decreased connectivity in the left gyrus rectus, left middle occipital gyrus, right angular gyrus, right MFG and right inferior frontal gyrus (IFG), orbital part within the lateral visual network (LVN), the left IFG, right precuneus, and right angular gyrus within the left frontoparietal (cognition) network. Furthermore, the mean FC values within the LVN showed significant positive correlations with total score of the Childhood Autism Rating Scale. Our findings indicate that abnormal FC extensively exists within some networks in children with ASD. This abnormal FC may constitute a biomarker of ASD. Our results are an important contribution to the study of neuropathophysiological mechanisms in children with ASD.

13.
Microb Biotechnol ; 12(3): 447-458, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30623566

RESUMO

CpxR is a global response regulator that negatively influences the antimicrobial activities of Xenorhabdus nematophila. Herein, the wildtype and ΔcpxR mutant of X. nematophila were cultured in a 5-l and 70-l bioreactor. The kinetic analysis showed that ΔcpxR significantly increased the cell biomass and antibiotic activity. The maximum dry cell weight (DCW) and antibiotic activity of ΔcpxR were 20.77 ± 1.56 g L-1 and 492.0 ± 31.2 U ml-1 and increased by 17.28 and 97.33% compared to the wildtype respectively. Xenocoumacin 1 (Xcn1), a major antimicrobial compound, was increased 3.07-fold, but nematophin was decreased by 48.7%. In 70-l bioreactor, DCW was increased by 18.97%, while antibiotic activity and Xcn1 were decreased by 27.71% and 11.0% compared to that in 5-l bioreactor respectively. Notably, pH had remarkable effects on the cell biomass and antibiotic activity of ΔcpxR, where ΔcpxR was sensitive to alkaline pH conditions. The optimal cell growth and antibiotic activity of ΔcpxR occurred at pH 7.0, while Xcn1 was increased 5.45- and 3.87-fold relative to that at pH 5.5 and 8.5 respectively. These findings confirmed that ΔcpxR considerably increased the biomass of X. nematophila at a late stage of fermentation. In addition, ΔcpxR significantly promoted the biosynthesis of Xcns but decreased the production of nematophin.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Xenorhabdus/crescimento & desenvolvimento , Xenorhabdus/metabolismo , Proteínas de Bactérias/genética , Benzopiranos/metabolismo , Reatores Biológicos/microbiologia , Meios de Cultura/química , Deleção de Genes , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Xenorhabdus/genética
14.
Microbiologyopen ; 8(2): e00674, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29888873

RESUMO

Xenocoumacin 1 (Xcn1), a major antimicrobial compound produced by Xenorhabdus nematophila, has great potential for use in agricultural productions. In this study, we evaluated the effects of CpxR, a global response regulator associated with the mutualism and pathogenesis of X. nematophila, on the antimicrobial activity and Xcn1 production. The mutation of cpxR could promote the production of Xcn1 significantly with its level in ΔcpxR mutant being 3.07 times higher than that in the wild type. Additionally, the expression levels of xcnA-L genes, which are responsible for the production of Xcn1, were increased in ΔcpxR mutant while the expression levels of xcnMN, which are required for the conversion of Xcn1 into Xcn2 was reduced. Noticeably, Xcn2 was also enhanced on account of the conversion of excessive Xcn1 in spite of low expression levels of xcnM and xcnN in ΔcpxR mutant. The transcriptional levels of ompR and lrp, encoding the global response regulators OmpR and Lrp which negatively and positively regulate the production of Xcn1 were concurrently decreased and increased, respectively. Correspondingly, ΔcpxR mutant also exhibited increased antimicrobial activities in vitro and in vivo. Together, these findings suggest that CpxR negatively regulates xcnA-L genes expression while positively regulating xcnMN expression in X. nematophila YL001, which led to a high yield of Xcn1 in ΔcpxR mutant.


Assuntos
Anti-Infecciosos/metabolismo , Proteínas de Bactérias/metabolismo , Benzopiranos/metabolismo , Regulação Bacteriana da Expressão Gênica , Xenorhabdus/genética , Xenorhabdus/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Família Multigênica
15.
Microb Cell Fact ; 16(1): 203, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141647

RESUMO

BACKGROUND: Xenocoumacin 1 (Xcn1) and Xenocoumacin 2 (Xcn2) are the main antimicrobial compounds produced by Xenorhabdus nematophila. Culture conditions, including pH, had remarkably distinct effects on the antimicrobial activity of X. nematophila. However, the regulatory mechanism of pH on the antimicrobial activity and antibiotic production of this bacterium is still lacking. RESULTS: With the increase of initial pH, the antimicrobial activity of X. nematophila YL001 was improved. The levels of Xcn1 and nematophin at pH 8.5 were significantly (P < 0.05) higher than that at pH 5.5 and 7.0. In addition, the expression of xcnA-L, which are responsible for the production of Xcn1 was increased and the expression of xcnMN, which are required for the conversion of Xcn1 to Xcn2 was reduced at pH 8.5. Also, the expression of ompR and cpxR were decreased at pH 8.5. CONCLUSION: The alkaline pH environment was found to be beneficial for the production of Xcn1 and nematophin, which in turn led to high antimicrobial activity of X. nematophila at pH 8.5.


Assuntos
Antibacterianos/biossíntese , Benzopiranos/metabolismo , Xenorhabdus/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Benzopiranos/farmacologia , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Indóis/metabolismo , Indóis/farmacologia , Xenorhabdus/genética
16.
Opt Express ; 24(21): 24137-24142, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828244

RESUMO

We study a scattering-assisted second harmonic generation process of a structured fundamental wave, whose phase front is periodically modulated, in a homogenous nonlinear medium. Scattering-assisted multiple-conical second harmonic in a one-dimensional structured fundamental wave and second harmonic belts in two-dimensional cases were observed. The experimental results are consistent with our analysis. This method not only allows dynamic control of the scattering-assisted second harmonic signal, but also has potential applications in various nonlinear frequency conversion processes.

17.
Mol Med Rep ; 11(3): 1997-2003, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25385517

RESUMO

The present study aimed to investigate the distribution of paired box 2 (PAX2) gene polymorphisms in healthy populations and in patients with Henoch­Schönlein purpura (HSP), focusing on the association between PAX2 gene polymorphisms and the susceptibility and clinical characteristics of HSP. Genomic DNA was extracted from the peripheral venous blood of 100 healthy children (mean age: 5 ± 1.9 years) and 118 children with HSP (mean age: 10.2 ± 2.3 years). Polymerase chain reaction (PCR) was used to amplify exons 1­12 of the PAX2 gene. Denaturing high performance liquid chromatography and DNA sequencing analysis were conducted for screening of mutations in the PAX2 gene in the PCR products. No genetic polymorphism of the PAX2 gene was identified in exons 1­7, 9, 10 or 12. Two single nucleotide polymorphisms (SNPs), which presented as complete linkage haplotype 798C>T/909A>C, were identified in exon 8. An SNP (1164T>A) was also identified in exon 11. No significant difference in the allele and genotype frequency distribution of exon 8 (798C>T) or 11 (1164T>A) of the PAX2 gene was identified between the HSP and control groups (P>0.05). However, the frequency of the PAX2 heterozygous genotype 798C>T in the HSP with nephritis (HSPN) group was significantly higher than those in the controls and in the HSP without nephritis group (P<0.05). Furthermore, no significant correlation was identified between the PAX2 gene exon 8 polymorphism (798 C>T) and the renal pathology of children with HSPN. An SNP (1164T>A) was identified in exon 11. The PAX2 heterozygous genotype 798C>T did not increase susceptibility to HSP, however, it may be used clinically as a screening indicator for HSP in children with a high risk of renal involvement.


Assuntos
Predisposição Genética para Doença , Vasculite por IgA/genética , Fator de Transcrição PAX2/genética , Polimorfismo de Nucleotídeo Único , Fatores Etários , Alelos , Estudos de Casos e Controles , Criança , Pré-Escolar , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Genótipo , Humanos , Vasculite por IgA/complicações , Vasculite por IgA/diagnóstico , Desequilíbrio de Ligação , Masculino , Nefrite/etiologia , Análise de Sequência de DNA
18.
J Proteomics ; 108: 223-37, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24907490

RESUMO

This study was conducted to define differences in Fusarium oxysporum f. sp. fragariae (Fof) isolates with different virulence efficiency to strawberry at the proteome level, in combination with their differences in mycelial growth, conidial production and germination. Comparative proteome analyses revealed substantial differences in mycelial proteomes between Fof isolates, where the 54 differentially accumulated protein spots were consistently over-accumulated or exclusively in the highly virulent isolate. These protein spots were identified through MALDI-TOF/TOF mass spectrometry analyses, and the identified proteins were mainly related to primary and protein metabolism, antioxidation, electron transport, cell cycle and transcription based on their putative functions. Proteins of great potential as Fof virulence factors were those involved in ubiquitin/proteasome-mediated protein degradation and reactive oxygen species detoxification; the hydrolysis-related protein haloacid dehalogenase superfamily hydrolase; 3,4-dihydroxy-2-butanone 4-phosphate synthase associated with riboflavin biosynthesis; and those exclusive to the highly virulent isolate. In addition, post-translational modifications may also make an important contribution to Fof virulence. BIOLOGICAL SIGNIFICANCE: F. oxysporum f. sp. fragariae (Fof), the causal agent of Fusarium wilt in strawberry, is a serious threat to commercial strawberry production worldwide. However, factors and mechanisms contributing to Fof virulence remained unknown. This study provides knowledge of the molecular basis for the differential expression of virulence in Fof, allowing new possibilities towards developing alternative and more effective strategies to manage Fusarium wilt.


Assuntos
Fragaria/microbiologia , Proteínas Fúngicas , Fusarium , Micélio , Doenças das Plantas/microbiologia , Fatores de Virulência , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/isolamento & purificação , Fusarium/metabolismo , Fusarium/patogenicidade , Micélio/genética , Micélio/isolamento & purificação , Micélio/metabolismo , Micélio/patogenicidade , Proteômica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
Sci Rep ; 4: 4300, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24599183

RESUMO

Entomopathogenic bacteria Xenorhabdus spp. produce secondary metabolites with potential antimicrobial activity for use in agricultural productions. This study evaluated the inhibitory effect of X. nematophila TB culture on plant pathogens Botrytis cinerea and Phytophthora capsici. The cell-free filtrate of TB culture showed strong inhibitory effects (>90%) on mycelial growth of both pathogens. The methanol-extracted bioactive compounds (methanol extract) of TB culture also had strong inhibitory effects on mycelial growth and spore germinations of both pathogens. The methanol extract (1000 µg/mL) and cell-free filtrate both showed strong therapeutic and protective effects (>70%) on grey mold both in detached tomato fruits and plants, and leaf scorch in pepper plants. This study demonstrates X. nematophila TB produces antimicrobial metabolites of strong activity on plant pathogens, with great potential for controlling tomato grey mold and pepper leaf scorch and being used in integrated disease control to reduce chemical application.


Assuntos
Antibiose , Botrytis , Phytophthora , Doenças das Plantas/microbiologia , Xenorhabdus , Botrytis/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Fenótipo , Phytophthora/crescimento & desenvolvimento , Piper/microbiologia , Esporos Fúngicos , Xenorhabdus/química , Xenorhabdus/crescimento & desenvolvimento
20.
J Proteome Res ; 12(4): 1772-88, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23495785

RESUMO

Fusarium wilt on strawberry caused by Fusarium oxysporum f. sp. fragariae (Fof) is a serious threat to commercial strawberry production worldwide. However, resistance mechanisms of strawberry against Fof remain unknown. To reveal the defense responses of strawberry against Fof, comparative proteome analyses were conducted to determine temporal changes in root proteomes of the resistant cv. Festival and susceptible cv. Camarosa from 4 to 72 h post inoculation with Fof. Analysis of proteins separated by two-dimensional gel electrophoresis revealed 79 Fof-responsive proteins with significant differences in abundance (P < 0.05 and greater than 2-fold) in the resistant and/or susceptible cultivar. The 79 proteins were identified through MALDI-TOF/TOF MS/MS analysis, and were mainly involved in primary, secondary and protein metabolism, stress and defense responses, antioxidant and detoxification mechanisms, and hormone biosynthesis. Among these, pathogenesis-related proteins and proteins involved in reactive oxygen species detoxification, ethylene/jasmonic acid signaling pathways, secondary metabolite biosynthesis, glycolysis and/or ubiquitin/26S proteasome-mediated protein degradation have great potential in mediating strawberry resistance against Fof. Protein modification may also have an important contribution. This study provides the first insights into strawberry resistance mechanisms against Fof, opening novel avenues to engineer new strawberry cultivars with improved disease resistance and to develop more effective and sustainable disease management strategies.


Assuntos
Fragaria/metabolismo , Fragaria/microbiologia , Fusarium/metabolismo , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Plantas/metabolismo , Eletroforese em Gel Bidimensional , Glicólise , Doenças das Plantas/microbiologia , Raízes de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Metabolismo Secundário , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA