Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601916

RESUMO

Synaptic loss is a primary pathology in Alzheimer's disease and correlates best with cognitive impairment as found in post-mortem studies. Previously, we observed in vivo reductions of synaptic density with [11C]UCB-J PET (radiotracer for synaptic vesicle protein 2A) throughout the neocortex and medial temporal brain regions in early Alzheimer's disease. In this study, we applied independent component analysis to synaptic vesicle protein 2A-PET data to identify brain networks associated with cognitive deficits in Alzheimer's disease in a blinded data-driven manner. [11C]UCB-J binding to synaptic vesicle protein 2A was measured in 38 Alzheimer's disease (24 mild Alzheimer's disease dementia and 14 mild cognitive impairment) and 19 cognitively normal participants. [11C]UCB-J distribution volume ratio values were calculated with a whole cerebellum reference region. Principal components analysis was first used to extract 18 independent components to which independent component analysis was then applied. Subject loading weights per pattern were compared between groups using Kruskal-Wallis tests. Spearman's rank correlations were used to assess relationships between loading weights and measures of cognitive and functional performance: Logical Memory II, Rey Auditory Verbal Learning Test-long delay, Clinical Dementia Rating sum of boxes and Mini-Mental State Examination. We observed significant differences in loading weights among cognitively normal, mild cognitive impairment and mild Alzheimer's disease dementia groups in 5 of the 18 independent components, as determined by Kruskal-Wallis tests. Only Patterns 1 and 2 demonstrated significant differences in group loading weights after correction for multiple comparisons. Excluding the cognitively normal group, we observed significant correlations between the loading weights for Pattern 1 (left temporal cortex and the cingulate gyrus) and Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019), Mini-Mental State Examination (r = 0.48, P = 0.0055) and Logical Memory II score (r = 0.44, P = 0.013). For Pattern 2 (temporal cortices), significant associations were demonstrated between its loading weights and Logical Memory II score (r = 0.34, P = 0.0384). Following false discovery rate correction, only the relationship between the Pattern 1 loading weights with Clinical Dementia Rating sum of boxes (r = -0.54, P = 0.0019) and Mini-Mental State Examination (r = 0.48, P = 0.0055) remained statistically significant. We demonstrated that independent component analysis could define coherent spatial patterns of synaptic density. Furthermore, commonly used measures of cognitive performance correlated significantly with loading weights for two patterns within only the mild cognitive impairment/mild Alzheimer's disease dementia group. This study leverages data-centric approaches to augment the conventional region-of-interest-based methods, revealing distinct patterns that differentiate between mild cognitive impairment and mild Alzheimer's disease dementia, marking a significant advancement in the field.

2.
Front Hum Neurosci ; 17: 1124254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908710

RESUMO

Introduction: Resting-state network (RSN) connectivity is a widely used measure of the brain's functional organization in health and disease; however, little is known regarding the underlying neurophysiology of RSNs. The aim of the current study was to investigate associations between RSN connectivity and synaptic density assessed using the synaptic vesicle glycoprotein 2A radioligand 11C-UCB-J PET. Methods: Independent component analyses (ICA) were performed on resting-state fMRI and PET data from 34 healthy adult participants (16F, mean age: 46 ± 15 years) to identify a priori RSNs of interest (default-mode, right frontoparietal executive-control, salience, and sensorimotor networks) and select sources of 11C-UCB-J variability (medial prefrontal, striatal, and medial parietal). Pairwise correlations were performed to examine potential intermodal associations between the fractional amplitude of low-frequency fluctuations (fALFF) of RSNs and subject loadings of 11C-UCB-J source networks both locally and along known anatomical and functional pathways. Results: Greater medial prefrontal synaptic density was associated with greater fALFF of the anterior default-mode, posterior default-mode, and executive-control networks. Greater striatal synaptic density was associated with greater fALFF of the anterior default-mode and salience networks. Post-hoc mediation analyses exploring relationships between aging, synaptic density, and RSN activity revealed a significant indirect effect of greater age on fALFF of the anterior default-mode network mediated by the medial prefrontal 11C-UCB-J source. Discussion: RSN functional connectivity may be linked to synaptic architecture through multiple local and circuit-based associations. Findings regarding healthy aging, lower prefrontal synaptic density, and lower default-mode activity provide initial evidence of a neurophysiological link between RSN activity and local synaptic density, which may have relevance in neurodegenerative and psychiatric disorders.

3.
Sci Transl Med ; 14(647): eabi8593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648810

RESUMO

Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents ß-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.


Assuntos
Doença de Alzheimer , Receptor de Glutamato Metabotrópico 5 , Doença de Alzheimer/patologia , Animais , Complemento C1q/metabolismo , Complemento C1q/uso terapêutico , Modelos Animais de Doenças , Camundongos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/uso terapêutico , Sinapses/metabolismo
4.
Fluids Barriers CNS ; 18(1): 26, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078410

RESUMO

BACKGROUND: Transferrin receptor (TfR1) mediated enhanced brain delivery of antibodies have been studied extensively in preclinical settings. However, the brain pharmacokinetics, i.e. brain entry, distribution and elimination are still not fully understood for this class of antibodies. The overall aim of the study was to compare the brain pharmacokinetics of two BBB-penetrating bispecific antibodies of different size (210 vs 58 kDa). Specifically, we wanted to investigate if the faster systemic clearance of the smaller non-IgG antibody di-scFv3D6-8D3, in comparison with the IgG-based bispecific antibody mAb3D6-scFv8D3, was also reflected in the brain. METHODS: Wild-type (C57/Bl6) mice were injected with 125I-iodinated ([125I]) mAb3D6-scFv8D3 (n = 46) or [125I]di-scFv3D6-8D3 (n = 32) and euthanized 2, 4, 6, 8, 10, 12, 16, or 24 h post injection. Ex vivo radioactivity in whole blood, peripheral organs and brain was measured by γ-counting. Ex vivo autoradiography and nuclear track emulsion were performed on brain sections to investigate brain and parenchymal distribution. Capillary depletion was carried out at 2, 6, and 24 h after injection of [125I]mAb3D6-scFv8D3 (n = 12) or [125I]di-scFv3D6-8D3 (n = 12), to estimate the relative levels of radiolabelled antibody in brain capillaries versus brain parenchyma. In vitro binding kinetics for [125I]mAb3D6-scFv8D3 or [125I]di-scFv3D6-8D3 to murine TfR were determined by LigandTracer. RESULTS: [125I]di-scFv3D6-8D3 showed faster elimination from blood, lower brain Cmax, and Tmax, a larger parenchymal-to-capillary concentration ratio, and a net elimination from brain at an earlier time point after injection compared with the larger [125I]mAb3D6-scFv8D3. However, the elimination rate from brain did not differ between the antibodies. The study also indicated that [125I]di-scFv3D6-8D3 displayed lower avidity than [125I]mAb3D6-scFv8D3 towards TfR1 in vitro and potentially in vivo, at least at the BBB. CONCLUSION: A smaller size and lower TfR1 avidity are likely important for fast parenchymal delivery, while elimination of brain-associated bispecific antibodies may not be dependent on these characteristics.


Assuntos
Anticorpos Biespecíficos/farmacocinética , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Radioisótopos do Iodo/metabolismo , Animais , Anticorpos Biespecíficos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feminino , Injeções Intravenosas , Radioisótopos do Iodo/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Ligação Proteica/fisiologia
5.
Neuroimage ; 237: 118167, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34000404

RESUMO

BACKGROUND: The human brain is inherently organized into distinct networks, as reported widely by resting-state functional magnetic resonance imaging (rs-fMRI), which are based on blood-oxygen-level-dependent (BOLD) signal fluctuations. 11C-UCB-J PET maps synaptic density via synaptic vesicle protein 2A, which is a more direct structural measure underlying brain networks than BOLD rs-fMRI. METHODS: The aim of this study was to identify maximally independent brain source networks, i.e., "spatial patterns with common covariance across subjects", in 11C-UCB-J data using independent component analysis (ICA), a data-driven analysis method. Using a population of 80 healthy controls, we applied ICA to two 40-sample subsets and compared source network replication across samples. We examined the identified source networks at multiple model orders, as the ideal number of maximally independent components (IC) is unknown. In addition, we investigated the relationship between the strength of the loading weights for each source network and age and sex. RESULTS: Thirteen source networks replicated across both samples. We determined that a model order of 18 components provided stable, replicable components, whereas estimations above 18 were not stable. Effects of sex were found in two ICs. Nine ICs showed age-related change, with 4 remaining significant after correction for multiple comparison. CONCLUSION: This study provides the first evidence that human brain synaptic density can be characterized into organized covariance patterns. Furthermore, we demonstrated that multiple synaptic density source networks are associated with age, which supports the potential utility of ICA to identify biologically relevant synaptic density source networks.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Sinapses/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/normas , Piridinas/farmacocinética , Pirrolidinonas/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Reprodutibilidade dos Testes , Fatores Sexuais , Processamento de Sinais Assistido por Computador , Adulto Jovem
6.
Mol Imaging Biol ; 23(3): 372-381, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33258040

RESUMO

PURPOSE: Synapse loss is a hallmark of Alzheimer's disease (AD) and correlates with cognitive decline. The validation of a noninvasive in vivo imaging approach to quantify synapse would greatly facilitate our understanding of AD pathogenesis and assist drug developments for AD. As animal models of neurodegenerative and neuropsychiatric disorders play a critical role in the drug discovery and development process, a robust, objective, and translational method for quantifying therapeutic drug efficacy in animal models will facilitate the drug development process. In this study, we tested the quantification reliability of the SV2A PET tracer, [18F]SynVesT-1, in a mouse model of AD (APP/PS1) and wild-type controls, and developed a simplified quantification method to facilitate large cohort preclinical imaging studies. PROCEDURES: We generated nondisplaceable binding potential (BPND) and distribution volume ratio (DVR) values using the simplified reference tissue model (SRTM) on the 90-min dynamic PET imaging data, with brain stem and cerebellum as the reference region, respectively. Then, we correlated the standardized uptake value ratio (SUVR)-1 and SUVR averaged from different imaging windows with BPND and DVR, using brain stem and cerebellum as the reference region, respectively. We performed homologous competitive binding assay and autoradiographic saturation binding assay using [18F]SynVesT-1 to calculate the Bmax and Kd. RESULTS: Using brain stem as the reference region, the averaged SUVR-1 from 30 to 60 min postinjection correlated well with the BPND calculated using SRTM. Using cerebellum as the reference region, the averaged SUVR from 30 to 60 min postinjection correlated well with the SRTM DVR. From the homologous competitive binding assay and autoradiographic saturation binding assay, the calculated the Bmax and Kd were 4.5-18 pmol/mg protein and 9.8-19.6 nM, respectively, for rodent brain tissue. CONCLUSIONS: This simplified SUVR method provides reasonable SV2A measures in APP/PS1 mice and their littermate controls. Our data indicate that, in lieu of a full 90-min dynamic scan, a 30-min static PET scan (from 30 to 60 min postinjection) would be sufficient to provide quantification data on SV2A expression, equivalent to the data generated from kinetic modeling. The methods developed here are readily applicable to the evaluation of therapeutic effects of novel drugs in this rodent model using [18F]SynVesT-1 and small animal PET.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Radioisótopos de Flúor/química , Tomografia por Emissão de Pósitrons/métodos , Piridinas/química , Pirrolidinas/química , Compostos Radiofarmacêuticos/farmacologia , Animais , Encéfalo/metabolismo , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/metabolismo , Cerebelo/diagnóstico por imagem , Cerebelo/metabolismo , Desenho de Fármacos , Feminino , Concentração Inibidora 50 , Cinética , Glicoproteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica
7.
ACS Chem Neurosci ; 11(24): 4460-4468, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33236886

RESUMO

Antibodies are attractive as radioligands due to their outstanding specificity and high affinity, but their inability to cross the blood-brain barrier (BBB) limits their use for CNS targets. To enhance brain distribution, amyloid-ß (Aß) antibodies were fused to a transferrin receptor (TfR) antibody fragment, enabling receptor mediated transport across the BBB. The aim of this study was to label these bispecific antibodies with fluorine-18 and use them for Aß PET imaging. Bispecific antibody ligands RmAb158-scFv8D3 and Tribody A2, both targeting Aß and TfR, were functionalized with trans-cyclooctene (TCO) groups and conjugated with 18F-labeled tetrazines through an inverse electron demand Diels-Alder reaction performed at ambient temperature. 18F-labeling did not affect antibody binding in vitro, and initial brain uptake was high. Conjugates with the first tetrazine variant ([18F]T1) displayed high uptake in bone, indicating extensive defluorination, a problem that was resolved with the second and third tetrazine variants ([18F]T2 and [18F]T3). Although the antibody ligands' half-life in blood was too long to optimally match the physical half-life of fluorine-18 (t1/2 = 110 min), [18F]T3-Tribody A2 PET seemed to discriminate transgenic mice (tg-ArcSwe) with Aß deposits from wild-type mice 12 h after injection. This study demonstrates that 18F-labeling of bispecific, brain penetrating antibodies is feasible and, with further optimization, could be used for CNS PET imaging.


Assuntos
Radioisótopos de Flúor , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Ligantes , Camundongos
8.
Neuroimage ; 184: 881-888, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300753

RESUMO

PET imaging of amyloid-beta (Aß) deposits in brain has become an important aid in Alzheimer's disease diagnosis, and an inclusion criterion for patient enrolment into clinical trials of new anti-Aß treatments. Available PET radioligands visualizing Aß bind to insoluble fibrils, i.e. Aß plaques. Levels of prefibrillar Aß forms, e.g. soluble oligomers and protofibrils, correlate better than plaques with disease severity and these soluble species are the neurotoxic form of Aß leading to neurodegeneration. The goal was to create an antibody-based radioligand, recognizing not only fibrillary Aß, but also smaller and still soluble aggregates. We designed and expressed a small recombinant bispecific antibody construct, di-scFv 3D6-8D3, targeting the Aß N-terminus and the transferrin receptor (TfR). Natively expressed at the blood-brain barrier (BBB), TfR could thus be used as a brain-blood shuttle. Di-scFv 3D6-8D3 bound to Aß1-40 with high affinity and to TfR with moderate affinity. Di-scFv [124I]3D6-8D3 was injected in two transgenic mouse models overexpressing human Aß and wild-type control mice and PET scanned at 14, 24 or 72 h after injection. Di-scFv [124I]3D6-8D3 was retained in brain of transgenic animals while it was cleared from wild-type lacking Aß. This difference was observed from 24 h onwards, and at 72 h, 18 months old transgenic animals, with high load of Aß pathology, displayed SUVR of 2.2-3.5 in brain while wild-type showed ratios close to unity. A subset of the mice were also scanned with [11C]PIB. Again wt mice displayed ratios of unity while transgenes showed slightly, non-significantly, elevated SUVR of 1.2, indicating improved sensitivity with novel di-scFv [124I]3D6-8D3 compared with [11C]PIB. Brain concentrations of di-scFv [124I]3D6-8D3 correlated with soluble Aß (p < 0.0001) but not with total Aß, i.e. plaque load (p = 0.34). We have successfully created a small bispecific antibody-based radioligand capable of crossing the BBB, subsequently binding to and visualizing intrabrain Aß in vivo. The radioligand displayed better sensitivity compared with [11C]PIB, and brain concentrations correlated with soluble neurotoxic Aß aggregates.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/análise , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Amiloide/análise , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/química , Autorradiografia/métodos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Humanos , Radioisótopos do Iodo , Camundongos Transgênicos , Compostos Radiofarmacêuticos/farmacocinética , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo
9.
J Nucl Med ; 59(12): 1885-1891, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29853653

RESUMO

Visualization of amyloid-ß (Aß) pathology with PET has become an important tool for making a specific clinical diagnosis of Alzheimer disease (AD). However, the available amyloid PET radioligands, such as 11C-Pittsburgh compound B, reflect levels of insoluble Aß plaques but do not capture soluble and protofibrillar Aß forms. Furthermore, the plaque load appears to be fairly static during clinical stages of AD and may not be affected by Aß-reducing treatments. The aim of the present study was to investigate whether a novel PET radioligand based on an antibody directed toward soluble aggregates of Aß can be used to detect changes in Aß levels during disease progression and after treatment with a ß-secretase (BACE-1) inhibitor. Methods: One set of transgenic mice (tg-ArcSwe, a model of Aß pathology) aged between 7 and 16 mo underwent PET with the Aß protofibril-selective radioligand 124I-RmAb158-scFv8D3 (where RmAb is recombinant mouse monoclonal antibody and scFv is single-chain variable fragment) to follow progression of Aß pathology in the brain. A second set of tg-ArcSwe mice, aged 10 mo, were treated with the BACE-1 inhibitor NB-360 for 3 mo and compared with an untreated control group. A third set of tg-ArcSwe mice, also aged 10 mo, underwent PET as a baseline group. Brain tissue was isolated after PET to determine levels of Aß by ELISA and immunohistochemistry. Results: The concentration of 124I-RmAb158-scFv8D3, as measured in vivo with PET, increased with age and corresponded well with the ex vivo autoradiography and Aß immunohistochemistry results. Mice treated with NB-360 showed significantly lower in vivo PET signals than untreated animals and were similar to the baseline animals. The decreased 124I-RmAb158-scFv8D3 concentrations in NB-360-treated mice, as quantified with PET, corresponded well with the decreased Aß levels measured in postmortem brain. Conclusion: Several treatments for AD are in phase 2 and 3 clinical trials, but the possibility of studying treatment effects in vivo on the important, nonfibrillar, forms of Aß is limited. This study demonstrated the ability of the Aß protofibril-selective radioligand 124I-RmAb158-scFv8D3 to follow disease progression and detect treatment effects with PET imaging in tg-ArcSwe mice.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Anticorpos Monoclonais , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Radioisótopos do Iodo , Camundongos , Camundongos Transgênicos , Ácidos Picolínicos/uso terapêutico , Ensaio Radioligante , Compostos Radiofarmacêuticos , Tiazinas/uso terapêutico
10.
Mol Imaging Biol ; 20(4): 605-614, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29297157

RESUMO

PURPOSE: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-beta (Aß) deposition, hyperphosphorylation of tau, and neuroinflammation. Astrocytes, the most abundant glial cell type in the nervous system, respond to neurodegenerative disorders through astrogliosis, i.e., converting to a reactive inflammatory state. The aim of this study was to investigate how in vivo quantification of astrogliosis using positron emission tomography (PET) radioligand deuterium-L-[11C]deprenyl ([11C]DED), binding to enzyme monoamine oxidase-B (MAO-B) which is overexpressed in reactive astrocytes during AD, corresponds to expression of glial fibrillary acidic protein (GFAP) and vimentin, i.e., two well-established markers of astrogliosis, during Aß pathology progression. PROCEDURES: APPArcSwe mice (n = 37) and wild-type (WT) control mice (n = 23), 2-16-month old, were used to investigate biomarkers of astrogliosis. The radioligand, [11C]DED, was used as an in vivo marker while GFAP, vimentin, and MAO-B were used to investigate astrogliosis and macrophage-associated lectin (Mac-2) to investigate microglia/macrophage activation by immunohistochemistry of the mouse brain. Aß and GFAP levels were also measured with ELISA in brain homogenates. RESULTS: The intrabrain levels of aggregated Aß and reactive astrocytes were found to be elevated in APPArcSwe compared with WT mice. GFAP and vimentin expression increased with age, i.e., with Aß pathology, in the APPArcSwe mice. This was not the case for in vivo marker [11C]DED that showed elevated binding of the same magnitude in APPArcSwe mice compared with WT mice at both 8 and 16 months. Further, immunohistochemistry indicated that there was limited co-expression of MAO-B and GFAP. CONCLUSIONS: MAO-B levels are increased early in Aß pathology progression, while GFAP and vimentin appear to increase later, most likely as a consequence of abundant Aß plaque formation. Thus, [11C]DED is a useful PET radioligand for the detection of changes in MAO-B at an early stage of AD progression but does not measure the total extent of astrogliosis at advanced stages of Aß pathology.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Progressão da Doença , Doença de Alzheimer/metabolismo , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Galectina 3/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Monoaminoxidase/metabolismo , Vimentina/metabolismo
11.
Sci Rep ; 7(1): 17254, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222502

RESUMO

Monoclonal antibodies (mAbs) have not been used as positron emission tomography (PET) ligands for in vivo imaging of the brain because of their limited passage across the blood-brain barrier (BBB). However, due to their high affinity and specificity, mAbs may be an attractive option for brain PET if their brain distribution can be facilitated. In the present study, a F(ab')2 fragment of the amyloid-beta (Aß) protofibril selective mAb158 was chemically conjugated to the transferrin receptor (TfR) antibody 8D3 to enable TfR mediated transcytosis across the BBB. The generated bispecific protein, 8D3-F(ab')2-h158, was subsequently radiolabeled and used for microPET imaging of Aß pathology in two mouse models of AD. [124I]8D3-F(ab')2-h158 was distributed across the BBB several fold more than unmodified mAbs in general and its accumulation in the brain reflected disease progression, while its concentration in blood and other organs remained stable across all age groups studied. Cerebellum was largely devoid of 8D3-F(ab')2-h158 in young and middle aged mice, while mice older than 18 months also showed some accumulation in cerebellum. In a longer perspective, the use of bispecific antibodies as PET ligands may enable in vivo 'immunohistochemistry' also of other proteins in the brain for which PET radioligands are lacking.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Anticorpos Biespecíficos/farmacocinética , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Barreira Hematoencefálica/metabolismo , Fragmentos Fab das Imunoglobulinas/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo , Distribuição Tecidual , Transcitose
12.
Biol Proced Online ; 19: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932173

RESUMO

BACKGROUND: Immunotherapy is a very fast expanding field within drug discovery and, hence, rapid and inexpensive expression of antibodies would be extremely valuable. Antibodies are, however, difficult to express. Multifunctional antibodies with additional binding domains further complicate the expression. Only few protocols describe the production of tetravalent bispecific antibodies and all with limited expression levels.. METHODS: Here, we describe a protocol that can produce functional tetravalent, bispecific antibodies at around 22 mg protein/l to a low cost. The expression system is based on the Expi293 cells, which have been adapted to grow in denser cultures than HEK293 cells and gives higher expression yields. The new protocol transfects the Expi293 cells with PEI (which has a negligible cost). RESULTS: The protocol has been used to generate multiple variants of tetra- and hexavalent bispecific antibodies with yields of around 22 mg protein/l within 10 days. All materials are commercially available and the implementation of the protocol is inexpensive and straightforward. The bispecific antibodies generated in our lab were capable of binding to all antigens with similar affinity as the original antibody. Two of the bispecific antibodies have also been used in transgenic mice as positron emission tomography (PET) ligands to successfully detect amyloid-beta (Aß) aggregates in vivo. CONCLUSIONS: This protocol is the first describing transfection of the human Expi293 cells with PEI. It can be used to generate functional multi-specific antibodies in high amounts. The use of biological drugs, and in particular multispecific antibodies, is rapidly increasing, hence improved protocols such as the one presented here are highly valuable.

13.
Neuroimage ; 148: 55-63, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28069541

RESUMO

Antibodies are highly specific for their target molecules, but their poor brain penetrance has restricted their use as PET ligands for imaging of targets within the CNS. The aim of this study was to develop an antibody-based radioligand, using the TribodyTM format, for PET imaging of soluble amyloid-beta (Aß) protofibrils, which are suggested to cause neurodegeneration in Alzheimer's disease. Antibodies, even when expressed in smaller engineered formats, are large molecules that do not enter the brain in sufficient amounts for imaging purposes. Hence, their transport across the blood-brain barrier (BBB) needs to be facilitated, for example through interaction with the transferrin receptor (TfR). Thus, a Fab fragment of the TfR antibody 8D3 was fused with two single chain variable fragments (scFv) of the Aß protofibril selective antibody mAb158. Five TribodyTM proteins (A1-A5) were generated with different linkers between the Fab-8D3 and scFv-158. All proteins bound to TfR and Aß protofibrils in vitro. Three of the proteins (A1-A3) were radiolabeled with iodine-125 and studied ex vivo in wild-type (wt) and transgenic mice overexpressing human Aß. The systemic pharmacokinetics were similar with half-lives in blood of around 9h for all three ligands. Brain concentrations at 2h were around 1% of the injected dose per gram brain tissue, which is similar to what is observed for small molecular radioligands and at least 10-fold higher than antibodies in general. At 72h, transgenic mice showed higher concentrations of radioactivity in the brain than wt mice (12, 15- and 16-fold for A1, A2 and A3 respectively), except in the cerebellum, an area largely devoid of Aß pathology. A3 was then labelled with iodine-124 for in vivo positron emission tomography (PET) imaging. Brain concentrations were quantified in six different regions showing a clear distinction both quantitatively and visually between wt and transgenic mice and a good correlation with Aß pathology. We have thus produced a recombinant, bispecific protein, actively transported into the brain, for PET imaging within the CNS. In a longer perspective, this technique may enable imaging of other proteins involved in neurodegenerative diseases for which imaging agents are completely lacking today.


Assuntos
Peptídeos beta-Amiloides , Emaranhados Neurofibrilares , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/imunologia , Animais , Anticorpos/química , Especificidade de Anticorpos , Autorradiografia , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Radioisótopos do Iodo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Compostos Radiofarmacêuticos/farmacocinética , Receptores da Transferrina/imunologia , Receptores da Transferrina/metabolismo
14.
Theranostics ; 7(2): 308-318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042336

RESUMO

The blood-brain barrier (BBB) is an obstacle for antibody passage into the brain, impeding the development of immunotherapy and antibody-based diagnostics for brain disorders. In the present study, we have developed a brain shuttle for active transport of antibodies across the BBB by receptor-mediated transcytosis. We have thus recombinantly fused two single-chain variable fragments (scFv) of the transferrin receptor (TfR) antibody 8D3 to the light chains of mAb158, an antibody selectively binding to Aß protofibrils, which are involved in the pathogenesis of Alzheimer's disease (AD). Despite the two TfR binders, a monovalent interaction with TfR was achieved due to the short linkers that sterically hinder bivalent binding to the TfR dimer. The design enabled efficient receptor-mediated brain uptake of the fusion protein. Two hours after administration, brain concentrations were 2-3% of the injected dose per gram brain, comparable to small molecular drugs and 80-fold higher than unmodified mAb158. After three days, fusion protein concentrations in AD transgenic mouse brains were 9-fold higher than in wild type mice, demonstrating high in vivo specificity. Thus, our innovative recombinant design markedly increases mAb158 brain uptake, which makes it a strong candidate for improved Aß immunotherapy and as a PET radioligand for early diagnosis and evaluation of treatment effect in AD. Moreover, this approach could be applied to any target within the brain.


Assuntos
Doença de Alzheimer/terapia , Anticorpos/metabolismo , Barreira Hematoencefálica/metabolismo , Fármacos Neuroprotetores/farmacocinética , Receptores da Transferrina/metabolismo , Animais , Anticorpos/genética , Química Encefálica , Modelos Animais de Doenças , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Neuropharmacology ; 113(Pt A): 293-300, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27743932

RESUMO

Alzheimer's disease (AD) is characterized by aggregation of amyloid beta (Aß) into insoluble plaques. Intermediates, Aß oligomers (Aßo), appear to be the mechanistic cause of disease. The de facto PET AD ligand, [11C]PIB, binds and visualizes Aß plaque load, which does not correlate well with disease severity. Therefore, finding a dynamic target that changes with pathology progression in AD is of great interest. Aßo alter synaptic plasticity, inhibit long-term potentiation, and facilitate long-term depression; key mechanisms involved in memory and learning. In order to convey these neurotoxic effects, Aßo requires interaction with the metabotropic glutamate 5 receptor (mGluR5). The aim was to investigate in vivo mGluR5 changes in an Aß pathology model using PET. Wild type C57/BL6 (wt) and AßPP transgenic mice (tg-ArcSwe), 4, 8, and 16 months old, were PET scanned with [11C]ABP688, which is highly specific to mGluR5, to investigate changes in mGluR5. Mouse brains were extracted postscan and mGluR5 and Aß protofibril levels were assessed with immunoblotting and ELISA respectively. Receptor-dense brain regions (hippocampus, thalamus, and striatum) displayed higher [11C]ABP688 concentrations corresponding to mGluR5 expression pattern. Mice had similar uptake levels of [11C]ABP688 regardless of genotype or age. Immunoblotting revealed general decline in mGluR5 expression and elevated levels of mGluR5 in 16 months old tg-ArcSwe compared with wt mice. [11C]ABP688 could visualize mGluR5 in the mouse brain. In conclusion, mGluR5 levels were found to decrease with age and tended to be higher in tg-ArcSwe compared with wt mice, however these changes could not be quantified with PET.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/diagnóstico por imagem , Radioisótopos de Carbono/metabolismo , Oximas/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Immunoblotting/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tomografia por Emissão de Pósitrons/métodos
16.
Nat Commun ; 7: 10759, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892305

RESUMO

Owing to their specificity and high-affinity binding, monoclonal antibodies have potential as positron emission tomography (PET) radioligands and are currently used to image various targets in peripheral organs. However, in the central nervous system, antibody uptake is limited by the blood-brain barrier (BBB). Here we present a PET ligand to be used for diagnosis and evaluation of treatment effects in Alzheimer's disease. The amyloid ß (Aß) antibody mAb158 is radiolabelled and conjugated to a transferrin receptor antibody to enable receptor-mediated transcytosis across the BBB. PET imaging of two different mouse models with Aß pathology clearly visualize Aß in the brain. The PET signal increases with age and correlates closely with brain Aß levels. Thus, we demonstrate that antibody-based PET ligands can be successfully used for brain imaging.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Animais , Anticorpos Monoclonais/química , Encéfalo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Radiografia
17.
PLoS One ; 8(9): e75393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086523

RESUMO

Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AßPPswe-PS1dE9 mice. Starting from 2 months of age, male AßPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1ß mRNA levels in AßPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AßPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AßPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD-related etiopathogenic processes. Intervention with the FC diet might be of interest for several other neurodegenerative and neurological disorders.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/prevenção & controle , Encéfalo/metabolismo , Cognição/fisiologia , Alimentos Fortificados/análise , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Colesterol/sangue , Cognição/efeitos dos fármacos , Primers do DNA/genética , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos/metabolismo , Imuno-Histoquímica , Interleucina-1beta/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase em Tempo Real , Uridina Monofosfato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...