Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36500336

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with limited therapeutic options. Pseudognaphalium affine (D. Don) Anderb. is a medicinal and edible plant used to treat cough, asthma, and COPD for a long time in folk medicine. The objective of this study is to evaluate the effect of Pseudognaphalium affine (D. Don) Anderb. extract (GAE) and investigate the possible underlying mechanism in vivo and in vitro. In vivo, the administration of GAE in a rat COPD model could significantly ameliorate lung damage and pulmonary function by inhibiting the production of pro-inflammatory cytokines. Western blot and real-time PCR results showed that GAE could suppress nuclear translocation of nuclear factor-kappa B (NF-κB), which indicated that GAE down-regulated the NF-κB pathway. Moreover, GAE protected against tumor necrosis factor (TNF)-α induced inflammatory response in BEAS-2B and inhibited the NF-κB pathway. All data suggested that GAE exhibited its anti-COPD effect by inhibiting pro-inflammatory cytokines, which may be associated with the inhibition of the NF-κB pathway.


Assuntos
Asteraceae , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , NF-kappa B/metabolismo , Transdução de Sinais , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Asteraceae/metabolismo , Extratos Vegetais/uso terapêutico
2.
Artigo em Inglês | MEDLINE | ID: mdl-34335849

RESUMO

Neuroinflammation plays a crucial part in the commencement and advancement of ischemic stroke. Gualou Guizhi granule (GLGZG) is known to well exhibit neuroprotective effect, but it is not known whether GLGZG can regulate the inflammatory process at the cellular level in BV2 microglia cells and protect against microglia-mediated neurotoxicity in neurons. Herein, we aimed to investigate the anti-inflammatory effects of GLGZG on BV2 microglia cells and protection against microglia-mediated neurotoxicity in neurons. Methods. The cell model of neuroinflammation was constructed by lipopolysaccharide (LPS) to observe the effect of GLGZG in the presence or absence of GLGZG. The production of nitric oxide (NO), inflammatory mediators, was detected. Moreover, potential mechanisms associated with the anti-inflammatory effect, such as inhibition of microglial activation and nuclear factor kappa B (NF-κB), were also investigated. In addition, to prove whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were cultured in the conditioned medium. And cell survivability and neuronal apoptosis of HT-22 were evaluated. Results. It was found that a main regulator of inflammation, NO, is suppressed by GLGZG in BV2 microglial cells. Moreover, GLGZG dose dependently decreased the mRNA and protein levels of inducible NO synthase (iNOS) in LPS-stimulated BV2 cells. Additionally, GLGZG inhibited the expression and secretion of proinflammatory cytokines in BV2 microglial cells. Also, GLGZG inhibited LPS-activated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in BV2 microglial cells at the intracellular level. GLGZG significantly affected Akt phosphorylation: phosphorylated forms of Akt increased. To check whether GLGZG protects against microglia-mediated neurotoxicity, neuronal HT-22 cells were incubated in the conditioned medium. GLGZG showed a neuroprotective effect by promoting cell survivability and suppressing neuronal apoptosis. Conclusions. GLGZG exerted its potential effects on suppressing inflammatory responses in LPS-induced BV2 cells by regulating NF-κB and Akt pathways. In addition, GLGZG could protect against microglia-mediated neurotoxicity in HT-22.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...