Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Respir Res ; 25(1): 14, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178075

RESUMO

BACKGROUND: Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS: Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS: DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Material Particulado/toxicidade , Material Particulado/análise , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
2.
Food Funct ; 14(21): 9841-9856, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37850547

RESUMO

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and characterized by emphysema, small airway remodeling and mucus hypersecretion. Citrus peels have been widely used as food spices and in traditional Chinese medicine for chronic lung disease. Given that citrus peels are known for containing antioxidants and anti-inflammatory compounds, we hypothesize that citrus peel intake can suppress oxidative stress and inflammatory response to air pollution exposure, thereby alleviating COPD-like pathologies. This study aimed to investigate the efficacy of citrus peel extract, namely Guang Chenpi (GC), in preventing the development of COPD induced by diesel exhaust particles (DEPs) and its potential mechanism. DEP-induced COPD-like lung pathologies, inflammatory responses and oxidative stress with or without GC treatment were examined in vivo and in vitro. Our in vivo study showed that GC was effective in decreasing inflammatory cell counts and inflammatory mediator (IL-17A and TNF-α) concentrations in bronchoalveolar lavage fluid (BALF). Pretreatment with GC extract also significantly decreased oxidative stress in the serum and lung tissue of DEP-induced COPD rats. Furthermore, GC pretreatment effectively reduced goblet cell hyperplasia (PAS positive cells) and fibrosis of the small airways, decreased macrophage infiltration as well as carbon loading in the peripheral lungs, and facilitated the resolution of emphysema and small airway remodeling in DEP-induced COPD rats. An in vitro free radical scavenging assay revealed robust antioxidant potential of GC in scavenging DPPH free radicals. Moreover, GC demonstrated potent capacities in reducing ROS production and enhancing SOD activity in BEAS-2B cells stimulated by DEPs. GC treatment significantly attenuated the increased level of IL-8 and MUC5AC from DEP-treated BEAS-2B cells. Mechanistically, GC treatment upregulated the protein level of Nrf-2 and could function via MAPK/NF-κB signaling pathways by suppressing the phosphorylation of p38, JNK and p65. Citrus peel extract is effective in decreasing oxidative stress and inflammatory responses of the peripheral lungs to DEP exposure. These protective effects further contributed to the resolution of COPD-like pathologies.


Assuntos
Citrus , Enfisema , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Emissões de Veículos/toxicidade , Citrus/metabolismo , Remodelação das Vias Aéreas , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Líquido da Lavagem Broncoalveolar/química , Enfisema/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L712-L721, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35318858

RESUMO

Accumulating evidence has confirmed that chronic obstructive pulmonary disease (COPD) is a risk factor for development of severe pathological changes in the peripheral lungs of patients with COVID-19. However, the underlying molecular mechanisms remain unclear. Because bronchiolar club cells are crucial for maintaining small airway homeostasis, we sought to explore whether the altered susceptibility to SARS-CoV-2 infection of the club cells might have contributed to the severe COVID-19 pneumonia in COPD patients. Our investigation on the quantity and distribution patterns of angiotensin-converting enzyme 2 (ACE2) in airway epithelium via immunofluorescence staining revealed that the mean fluorescence intensity of the ACE2-positive epithelial cells was significantly higher in club cells than those in other epithelial cells (including ciliated cells, basal cells, goblet cells, neuroendocrine cells, and alveolar type 2 cells). Compared with nonsmokers, the median percentage of club cells in bronchiolar epithelium and ACE2-positive club cells was significantly higher in COPD patients. In vitro, SARS-CoV-2 infection (at a multiplicity of infection of 1.0) of primary small airway epithelial cells, cultured on air-liquid interface, confirmed a higher percentage of infected ACE2-positive club cells in COPD patients than in nonsmokers. Our findings have indicated the role of club cells in modulating the pathogenesis of SARS-CoV-2-related severe pneumonia and the poor clinical outcomes, which may help physicians to formulate a novel therapeutic strategy for COVID-19 patients with coexisting COPD.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Enzima de Conversão de Angiotensina 2 , Células Epiteliais , Humanos , Pulmão , Peptidil Dipeptidase A , SARS-CoV-2
4.
FEBS Lett ; 595(13): 1819-1824, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961290

RESUMO

We previously observed enhanced immunoglobulin A (IgA) responses in severe COVID-19, which might confer damaging effects. Given the important role of IgA in immune and inflammatory responses, the aim of this study was to investigate the dynamic response of the IgA isotype switch factor TGF-ß1 in COVID-19 patients. We observed, in a total of 153 COVID-19 patients, that the serum levels of TGF-ß1 were increased significantly at the early and middle stages of COVID-19, and correlated with the levels of SARS-CoV-2-specific IgA, as well as with the APACHE II score in patients with severe disease. In view of the genetic association of the TGF-ß1 activator THBS3 with severe COVID-19 identified by the COVID-19 Host Genetics Initiative, this study suggests TGF-ß1 may play a key role in COVID-19.


Assuntos
COVID-19/imunologia , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Trombospondinas/genética , Fator de Crescimento Transformador beta1/sangue , APACHE , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/sangue , COVID-19/genética , Feminino , Humanos , Imunoglobulina A/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
5.
J Med Virol ; 93(5): 3257-3260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506974

RESUMO

Previous studies have revealed a diagnostic role of pathogen-specific IgA in respiratory infections. However, co-detection of serum specific IgA for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common respiratory pathogens remains largely unexplored. This study utilizes a protein microarray technology for simultaneous and quantitative measurements of specific IgAs for eight different respiratory pathogens including adenovirus, respiratory syncytial virus, influenza virus type A, influenza virus type B, parainfluenza virus, mycoplasma pneumoniae, chlamydia pneumoniae, and SARS-CoV-2 in serum sample of patients with coronavirus disease 2019 (COVID-19). A total of 42 patients with COVID-19 were included and categorized into severe cases (20 cases) and nonsevere cases (22 cases). The results showed that co-detection rate of specific-IgA for SARS-CoV-2 with at least one pathogen were significantly higher in severe cases than that of nonsevere cases (72.2% vs. 46.2%, p = .014). Our study indicates that co-detection of IgA antibodies for respiratory pathogens might provide diagnostic value for the clinics and also be informative for risk stratification and disease management in patients with COVID-19.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Imunoglobulina A/sangue , SARS-CoV-2/imunologia , Adulto , Especificidade de Anticorpos , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Front Cell Dev Biol ; 9: 810842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35174169

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease attributed to the complex interplay of genetic and environmental risks. The muco-ciliary clearance (MCC) system plays a critical role in maintaining the conduit for air to and from the alveoli, but it remains poorly understood whether the MCC abnormalities in conducting airway are involved in IPF pathogenesis. In this study, we obtained the surgically resected bronchi and peripheral lung tissues from 31 IPF patients and 39 control subjects, and we sought to explore the morphologic characteristics of MCC in conducting airway by using immunostaining and scanning and transmission electron microscopy. In the submucosal regions of the bronchi, we found that the areas of mucus glands (MUC5B+) were significantly larger in IPF patients as compared with control subjects (p < 0.05). In the surface epithelium of three airway regions (bronchi, proximal bronchioles, and distal bronchioles), increased MUC5B and MUC5AC expression of secretory cells, decreased number of ciliated cells, and increased ciliary length were observed in IPF patients than control subjects (all p < 0.05). In addition, the mRNA expression levels of MUC5B were up-regulated in both the bronchi and peripheral lung of IPF patients than those of control subjects (p < 0.05), accompanied with 93.55% IPF subjects who had obvious MUC5B+ mucus plugs in alveolar regions. No MUC5B rs35705950 single-nucleotide polymorphism allele was detected in both IPF patients and control subjects. Our study shows that mucus hypersecretion and ciliary impairment in conducting airway are major causes of mucus plugs in alveolar regions and may be closely related to the alveolar injuries in IPF patients.

8.
Chest ; 150(4): 777-788, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27164291

RESUMO

BACKGROUND: Clinical practice guidelines (CPGs) have been developed to provide health-care practitioners with the best possible evidence, but the quality of these CPGs varies greatly. OBJECTIVE: The goal of this study was to systematically evaluate the quality of cough CPGs and identify gaps limiting evidence-based practice. METHODS: Systematic searches were conducted to identify cough CPGs in guideline databases, developers' Websites, and Medline. Four reviewers independently evaluated eligible guidelines by using the Appraisal of Guidelines for Research and Evaluation II assessment tool. Agreement among reviewers was measured by using the intraclass correlation coefficient. The number of recommendations, strength of recommendation, and levels of evidence were determined. RESULTS: Fifteen cough CPGs were identified. An overall high degree of agreement among reviewers was observed (intraclass correlation coefficient, 0.82 [95% CI, 0.79-0.85]). The quality ranged from good to acceptable in the scope and purpose (mean, 72%; range, 54%-93%) and clarity and presentation (mean, 68%; range, 50%-90%) domains but not in stakeholder involvement (mean, 36%; range, 18%-90%), rigor of development (mean, 36%; range, 9%-93%), applicability (mean, 23%; range, 9%-83%), and editorial independence domains (mean, 24%; range, 0-96%). Seven guidelines (46.7%) were considered "strongly recommended" or "recommended with modifications" for clinical practice. More than 70% of recommendations were based on nonrandomized studies (Level C, 30.4%) and expert opinion (Level D, 41.3%). CONCLUSIONS: The quality of cough CPGs is variable, and recommendations are largely based on low-quality evidence. There is significant room for improvement to develop high-quality guidelines, which urgently warrants first-class research to minimize the vital gaps in the evidence for formulation of cough CPGs.


Assuntos
Tosse/diagnóstico , Medicina Baseada em Evidências , Guias de Prática Clínica como Assunto/normas , Lacunas da Prática Profissional , Doença Aguda , Doença Crônica , Tosse/terapia , Humanos
9.
J Ethnopharmacol ; 165: 73-82, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25681545

RESUMO

Schisandra chinensis (S. chinensis) is a traditional Chinese medicine commonly used in prescription medications for the treatment of chronic cough. However, the material basis of S. chinensis in relieving cough has not been completely elucidated yet. This study established a guinea pig model of cough hypersensitivity induced by 14 days of cigarette smoke (CS) exposure, to evaluate the antitussive, antioxidant, and anti-inflammatory effects of three S. chinensis extracts. And then the function of four lignans in reducing expression of TRPV1 and TRPA1 was examined using A549 cells induced by cigarette smoke extract (CSE). The results demonstrated that both ethanol extract (EE) and ethanol-water extract (EWE) of S. chinensis, but not water extract (WE), significantly reduced the cough frequency enhanced by 0.4M citric acid solution in these cough hypersensitivity guinea pigs. Meanwhile, pretreatment with EE and EWE both significantly attenuated the CS-induced increase in infiltration of pulmonary neutrophils and total inflammatory cells, as well as pulmonary MDA, TNF-α, and IL-8, while remarkably increased activities of pulmonary SOD and GSH. According to H&E and immunofluorescence staining assays, airway epithelium hyperplasia, smooth muscle thickening, inflammatory cells infiltration, as well as expression of TRPV1 and TRPA1, were significantly attenuated in animals pretreatment with 1g/kg EE. Moreover, four lignans of EE, including schizandrin, schisantherin A, deoxyschizandrin and γ-schisandrin, significantly inhibited CSE-induced expression of TRPV1, TRPA1 and NOS3, as well as NO release in A549 cells. In conclusion, S. chinensis reduces cough frequency and pulmonary inflammation in the CS-induced cough hypersensitivity guinea pigs. Lignans may be the active components.


Assuntos
Antitussígenos/uso terapêutico , Tosse/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Hipersensibilidade Respiratória/tratamento farmacológico , Schisandra/química , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Linhagem Celular Tumoral , Quimiocinas/análise , Cromatografia Líquida de Alta Pressão , Tosse/etiologia , Citocinas/análise , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/isolamento & purificação , Frutas/química , Cobaias , Exposição por Inalação/efeitos adversos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Hipersensibilidade Respiratória/etiologia , Sistema Respiratório/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...