Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(33): 44288-44297, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116297

RESUMO

As a key device for solar energy conversion, solar absorbers play a critical role in improving the operating temperature of concentrated solar power (CSP) systems. However, solar absorbers with high spectral selectivity and good thermal stability at high temperatures in air are still scarce. This study presents a novel surface reconstruction strategy to improve the spectral selectivity of La0.5Sr0.5CoO3-δ (LSC5) for enhanced CSP application. The strategy could efficiently enhance the solar absorptance due to the existence of a high-absorption thin layer composed of nanoparticles on the LSC5 surface. Meanwhile, the crystal facet with low emittance on the LSC5 surface was exposed. Thus, the LSC5 that underwent surface reconstruction achieved a higher solar absorptance (∼0.75) and lower infrared emittance (∼0.19) compared to the original LSC5 (0.63/0.21), representing an improvement of nearly 32%. Additionally, the surface reconstructed LSC5 demonstrated a lower infrared thermographic temperature and a higher solar-thermal conversion equilibrium temperature compared to those of LSC5 and SiC. Moreover, the reconstructed LSC5 could maintain stable performance up to 800 °C in air, which might simplify the complexity of the CSP systems. The surface reconstruction strategy provided a new method to optimize the spectral selectivity of high-temperature stable ceramics, contributing to advancements in solar energy conversion technologies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38684025

RESUMO

Nowadays, food safety is still facing great challenges. During storage and transportation, perishable goods have to be kept at a low temperature. However, the current logistics still lack enough preservation ability to maintain a low temperature in the whole. Hence, considering the temperature fluctuation in logistics, in this work, the passive radiative cooling (RC) technology was applied to package to enhance the temperature control capability in food storage and transportation. The RC emitter with selective infrared emission property was fabricated by a facile coating method, and Al2O3 was added to improve the wear resistance. The sunlight reflectance and infrared emittance within atmospheric conditions could reach up to 0.92 and 0.84, respectively. After abrasion, the sunlight reflection only decreased by 0.01, and the infrared emission showed a negligible change, revealing excellent wear resistance. During outdoor measurement, the box assembled by RC emitters (RC box) was proved to achieve temperature drops of ∼9 and ∼4 °C compared with the corrugated box and foam box, respectively. Besides, the fruits stored in the RC box exhibited a lower decay rate. Additionally, after printing with patterns to meet the aesthetic requirements, the RC emitter could also maintain the cooling ability. Given the superior optical properties, wear resistance, and cooling capability, the emitter has great potential for obtaining a better temperature control ability in food storage and transportation.

3.
ACS Appl Mater Interfaces ; 15(13): 17123-17133, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971527

RESUMO

Energy consumption during cooling and heating poses a great threat to the development of society. Thermal regulation, as switchable cooling and heating in a single platform, is therefore urgently demanded. Herein, a switchable multifunctional device integrating heating, cooling, and latent energy storage was proposed for temperature regulation and window energy saving for buildings. A radiative cooling (RC) emitter, a phase-change (PC) membrane, and a solar-heating (SH) film were connected layer by layer to form a sandwich structure. The RC emitter exhibited selective infrared emission (emissivity in the atmospheric window: 0.81, emissivity outside the atmospheric window: 0.39) and a high solar reflectance (0.92). Meanwhile, the SH film had a high solar absorptivity (0.90). More importantly, both the RC emitter and the SH film displayed excellent wear resistance and UV resistance. The PC layer can control the temperature at a steady state under dynamic weather conditions, which could be verified by indoor and outdoor measurements. The thermal regulation performance of the multifunctional device was also verified by outdoor measurements. The temperature difference between the RC and SH models of the multifunctional device could reach up to 25 °C. The as-constructed switchable multifunctional device is a promising candidate for alleviating the cooling and heating energy consumption and realizing energy saving for windows.

4.
BMJ Open ; 12(7): e056685, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777884

RESUMO

OBJECTIVE: The COVID-19 outbreak was first reported in Wuhan, China, and has been acknowledged as a pandemic due to its rapid spread worldwide. Predicting the trend of COVID-19 is of great significance for its prevention. A comparison between the autoregressive integrated moving average (ARIMA) model and the eXtreme Gradient Boosting (XGBoost) model was conducted to determine which was more accurate for anticipating the occurrence of COVID-19 in the USA. DESIGN: Time-series study. SETTING: The USA was the setting for this study. MAIN OUTCOME MEASURES: Three accuracy metrics, mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE), were applied to evaluate the performance of the two models. RESULTS: In our study, for the training set and the validation set, the MAE, RMSE and MAPE of the XGBoost model were less than those of the ARIMA model. CONCLUSIONS: The XGBoost model can help improve prediction of COVID-19 cases in the USA over the ARIMA model.


Assuntos
COVID-19 , Modelos Estatísticos , COVID-19/epidemiologia , China/epidemiologia , Previsões , Humanos , Incidência , Estados Unidos/epidemiologia
5.
Polymers (Basel) ; 14(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35631980

RESUMO

There is a need to create next-generation polymer composites having high property, unique function, and intelligent behaviors, such as shape memory effect (SME) and self-healing (SH) capability. Rare earth complexes can provide luminescence for polymers, and their dispersion is highly affected by ligand structures. Here, we created three different REOCs with different ligands before studying the effects of ligands on REOC dispersion in polyurea-urethane (PUU) with disulfide bonds in main chains. In addition, the effects of different REOCs on mechanical properties, luminescent functions, and intelligent behaviors of PUU composites were studied. The results showed that REOC I (Sm(TTA)3phen: TTA, thenoyltrifluoroacetone; phen, 1,10-phenanthroline) has incompatible ligands with the PUU matrix. REOC I and REOC III (Sm(BUBA)3phen: BUBA, 4-benzylurea-benzoic acid) with amine and urea groups facilitate their dispersion. It was REOC III that helped the maintenance of mechanical properties of PUU composites due to the good dispersion and the needle-like morphologies. Due to more organic ligands of REOC III, the fluorescence intensity of composite materials is reduced. The shape recovery ratio of the composite was not as good as that of pure PUU when a large amount of fillers was added. Besides, REOC I reduced the self-healing efficiency of PUU composites due to poor dispersion, and the other two REOCs increased the self-healing efficiency. The results showed that ligands in REOCs are important for their dispersion in the PUU matrix. The poor dispersion of REOC I is unbeneficial for mechanical properties and intelligent behavior. The high miscibility of REOC II (Sm(PABA)3phen: PABA, 4-aminobenzoic acid) decreases mechanical properties as well but ensures the good shape recovery ratio and self-healing efficiency. The mediate miscibility and needle-like morphology of REOC III are good for mechanical properties. The shape recovery ratio, however, was decreased.

6.
Environ Sci Pollut Res Int ; 29(27): 41534-41543, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35094276

RESUMO

The COVID-19 outbreak emerged in Wuhan, China, and was declared a global pandemic in March 2020. This study aimed to explore the association of daily mean temperature with the daily counts of COVID-19 cases in Beijing, Shanghai, Guangzhou, and Shenzhen, China. Data on daily confirmed cases of COVID-19 and daily mean temperatures were retrieved from the 4 first-tier cities in China. Distributed lag nonlinear models (DLNMs) were used to assess the association between daily mean temperature and the daily cases of COVID-19 during the study period. After controlling for the imported risk index and long-term trends, the distributed lag nonlinear model showed that there were nonlinear and lag relationships. The daily cumulative relative risk decreased for every 1.0 °C change in temperature in Shanghai, Guangzhou, and Shenzhen. However, the cumulative relative risk increased with a daily mean temperature below - 3 °C in Beijing and then decreased. Moreover, the delayed effects of lower temperatures mostly occurred within 6-7 days of exposure. There was a negative correlation between the cumulative relative risk of COVID-19 incidence and temperature, especially when the temperature was higher than - 3 °C. The conclusions from this paper will help government and health regulators in these cities take prevention and protection measures to address the COVID-19 crisis and the possible collapse of the health system in the future.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Cidades/epidemiologia , Humanos , Incidência , Temperatura , Fatores de Tempo
7.
Environ Sci Pollut Res Int ; 29(9): 13386-13395, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34595708

RESUMO

This study sought to identify the spatial, temporal, and spatiotemporal clusters of COVID-19 cases in 366 cities in mainland China with the highest risks and to explore the possible influencing factors of imported risks and environmental factors on the spatiotemporal aggregation, which would be useful to the design and implementation of critical preventative measures. The retrospective analysis of temporal, spatial, and spatiotemporal clustering of COVID-19 during the period (January 15 to February 25, 2020) was based on Kulldorff's time-space scanning statistics using the discrete Poisson probability model, and then the logistic regression model was used to evaluate the impact of imported risk and environmental factors on spatiotemporal aggregation. We found that the spatial distribution of COVID-19 cases was nonrandom; the Moran's I value ranged from 0.017 to 0.453 (P < 0.001). One most likely cluster and three secondary likely clusters were discovered in spatial cluster analysis. The period from February 2 to February 9, 2020, was identified as the most likely cluster in the temporal cluster analysis. One most likely cluster and seven secondary likely clusters were discovered in spatiotemporal cluster analysis. Imported risk, humidity, and inhalable particulate matter PM2.5 had a significant impact on temporal and spatial accumulation, and temperature and PM10 had a low correlation with the spatiotemporal aggregation of COVID-19. The information is useful for health departments to develop a better prevention strategy and potentially increase the effectiveness of public health interventions.


Assuntos
COVID-19 , China , Cidades , Análise por Conglomerados , Humanos , Incidência , Estudos Retrospectivos , SARS-CoV-2 , Análise Espaço-Temporal
8.
ACS Appl Mater Interfaces ; 13(18): 21207-21216, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33909395

RESUMO

Energy and mass transfer in photocatalytic systems plays a significant role in photocatalytic water splitting, but relevant research has long been ignored. Here, an interfacial photocatalytic mode for photocatalytic hydrogen production is exploited to optimize the energy and mass flows and mainly includes a heat-insulating layer, a water-channel layer, and a photothermal photocatalytic layer. In this mode, the energy flow is optimized for efficient spreading, conversion, and utilization. A low-loss path (ultrathin water film) and an efficient heat localized zone are constructed, where light energy, especially infrared-light energy, can transfer to the target functional membrane surface with low loss and the thermal energy converted from light can be localized for further use. Meanwhile, the optimization of the mass flow is achieved by improving the desorption capacity of the products. The generated hydrogen bubbles can rapidly leave from the surface of the photocatalyst, along with the active sites being released timely. Consequently, the photocatalytic hydrogen production rate can be increased up to about 6.6 times that in a conventional photocatalytic mode. From the system design aspect, this work provides an efficient strategy to improve the performance of photocatalytic water splitting by optimizing the energy and mass flows.

9.
Glob Chall ; 4(5): 1900094, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32328288

RESUMO

Water collection from fog has received much attention to meet the challenges of scarcity of clean drinking water in desert and arid regions. Currently, solar-thermal technology is being used as an efficient, sustainable, and low-cost method for water desalination to produce clean water. To collect the clean water, in recent years, most researchers have designed the structure of water collection surfaces. However, the heat released during the liquefaction process of droplets has an adverse effect on the condensation of droplets, and thus affecting the water collection efficiency. Here, in order to improve water collection efficiency, a radiative cooling layer is introduced on the back of the collection surface to dissipate the heat released during droplet liquefaction. The radiative cooling layer, consisting of poly(vinylidene fluoride-co-hexafluoropropene) embedded with SiO2 and CaMoO4 nanoparticles, can theoretically cool 18.1 °C below the ambient temperature in the daytime. With the addition of cooling coating on the back of the water collection surface, the water harvesting efficiency can be increased by 43-52%. The developed water harvesting device may provide a new pathway to the efficient collection of fresh water.

10.
Materials (Basel) ; 12(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731827

RESUMO

Tobermorite and Al-substituted tobermorite with varying Al/(Si + Al) molar ratios were synthesized via the static hydrothermal method. The effect of different Al substitution ratios on the structure of tobermorite was investigated by XRD, SEM-EDS, TG-DSC, FT-IR, 29Si, and 27Al MAS-NMR. The interplanar crystal spacing of (002) increased with the increment of the Al substitution ratio. The maximum ratio of the Al substitution for Si in the structure of tobermorite was about 15 at %, which was limited by the compositions of tobermorite and the electrostatic repulsive forces caused by Al substitution. The DSC curve of the tobermorite with an Al/(Al + Si) molar ratio of 0.15 showed a larger exothermic peak area at 850 °C, indicating that the Al-O-Si bond was formed in the structure of tobermorite and the Al participated in the recrystallization. The 29Si and 27Al MAS-NMR results confirmed that tetrahedral Al was introduced into the structure of the tobermorite. New silicon sites, Q2(1Al) and Q3(1Al), formed by the Al substitution for Si in bridging and non-bridging sites, were detected. Compared to the tobermorite without Al substitution, the adsorption capacity of Al-substituted tobermorite with Al/(Al + Si) = 0.15 to Na+ was improved by 44%.

11.
Materials (Basel) ; 12(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013849

RESUMO

Radiative cooling can make the selective emitter cool below ambient temperature without any external energy. Recent advances in photonic crystal and metamaterial technology made a high-efficiency selective emitter achievable by precisely controlling the emitter's Infrared emission spectrum. However, the high cost of the photonic crystals and meta-materials limit their application. Herein, an efficient bilayer selective emitter is prepared based on the molecular vibrations of functional nanoparticles. By optimizing the volume fraction of the functional nanoparticles, the bilayer selective emitter can theoretically cool 36.7 °C and 25.5 °C below the ambient temperature in the nighttime and daytime, respectively. Such an efficient cooling performance is comparable with the published photonic crystal and metamaterial selective emitters. The rooftop measurements show that the bilayer selective emitter is effective in the ambient air even under direct sunlight. The relatively low cost and excellent cooling performance enable the bilayer selective emitter to have great potential for a practical purpose.

12.
Environ Sci Pollut Res Int ; 23(10): 9964-71, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26865480

RESUMO

In the present study, five plant species were screened for uranium uptake using a hydroponic experimental set-up. The effect of the U concentration, pH, as well as the presence of carbonates, phosphates, and organic acids (lactic acid, malic acid, citric acid) on the uptake of U by variant S. alfredii (V S. alfredii) and wild S. alfredii (W S. alfredii) were investigated. Results showed that V S. alfredii exhibited higher U content in the roots than the other four plants and with the increase of U concentration in the solution, the U uptake by V S. alfredii and W S. alfredii increased. The results also showed that different U speciation in different cultivation solution took an important role on the uptake of U in variant Sedum alfredii: at pH 6.5, U hydrolysis species (UO2)3(OH)5 (+)is predominant and the U concentrations in V S. alfredii roots reached a maximum value (3.7 × 10(4) mg/kg). U complexation with carbonates, phosphates, and some organic acids in the solution resulted in a decrease in the U content in the roots except for lactic acid. Our researches highlight the correlations between U speciation and the uptake on V S. Alfredii, which will be helpful for improved removal of U from the groundwater using phytoremediation method.


Assuntos
Raízes de Plantas/metabolismo , Sedum/metabolismo , Poluentes do Solo/metabolismo , Urânio/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Carbonatos/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Ácido Láctico/química , Malatos/química , Fosfatos/química , Poluentes do Solo/análise , Urânio/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA