Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Small ; : e2400151, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558525

RESUMO

Transparent paper manufactured from wood fibers is emerging as a promising, cost-effective, and carbon-neutral alternatives to plastics. However, fully exploring their mechanical properties is one of the most pressing challenges. In this work, a strong yet tough transparent paper with superior folding endurance is prepared by rationally altering the native fiber structure. Microwave-assisted choline chloride/lactic acid deep eutectic solvent (DES) pulping is first utilized to isolate wood fibers from spruce wood. During this process, the S1 layer within the fibers is partially disrupted, forming protruding microfibrils that play a crucial role in enhancing cellulose accessibility. Subsequently, carboxymethylation treatment is applied to yield uniformly swollen carboxymethylated wood fibers (CM fibers), which improves the interaction between CM fibers during papermaking. The as-prepared transparent paper not only shows a 90% light transmittance (550 nm) but also exhibits impressive mechanical properties, including a folding endurance of over 26 000, a tensile strength of 248.4 MPa, and a toughness of 15.6 MJ m-3. This work provides a promising route for manufacturing transparent paper with superior mechanical properties from wood fibers and can extend their use in areas normally dominated by high-performance nonrenewable plastics.

2.
ACS Nano ; 18(14): 10259-10269, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551447

RESUMO

Water-induced electricity harvesting has gained much significance for energy sustainability. Bio-based hydrovoltaic materials increase the attractiveness of this strategy. Although promising, it faces a challenge due to its reliance on fresh water and its inherently low power output. Herein, the energy from alkalinity-gradient power generation demonstrated the feasibility of reuse of alkaline wastewater to develop an all-wood-based water-induced electric generator (WEG) based on ion concentration gradients. The intermittent water droplets bring about uneven distribution of electrolyte and endow delignified wood with the difference of ion concentration along aligned cellulose nanochannels, thus supplying electrical power. The practice of using alkali reservoirs, including industrial wastewater, further contributes to electricity generation. The cubic WEG with a side length of 2 cm can produce an ultrahigh open-circuit voltage of about 1.1 V and a short-circuit current of up to 320 µA. A power output of 6.75 µW cm-2 is correspondingly realized. Series-connected WEGs can be used as an energy source for commercial electronics and self-powered systems. Our design provides a double value proposition, allowing for sustainable energy generation and wastewater reuse.

3.
J Colloid Interface Sci ; 660: 555-564, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266337

RESUMO

Despite the intriguing features of freestanding flexible electronic devices, such as their binder-free nature and cost-effectiveness, the limited loading capacity of active material poses a challenge to achieving practical high-performance flexible electrodes. We propose a novel approach that integrates multiple self-assembly and in-situ polymerization techniques to fabricate a high-loading paper-based flexible electrode (MXene/Polypyrrole/Paper) with exceptional areal capacitance. The approach enables polypyrrole to form a porous conductive network structure on the surface of paper fiber through MXene grafting via hydrogen bonding and electrostatic interaction, resulting in an exceptionally high polypyrrole loading of 10.0 mg/cm2 and a conductivity of 2.03 S/cm. Moreover, MXene-modified polypyrrole paper exhibits a more homogeneous pore size distribution ranging from 5 to 50 µm and an increased specific surface area of 3.11 m2/g. Additionally, we have optimized in-situ polymerization cycles for paper-based supercapacitors, resulting in a remarkable areal capacitance of 2316 mF/cm2 (at 2 mA/cm2). The capacitance retention rate and conductivity rate maintain over 90 % after undergoing 100 bends.The maximum energy density and cycling stability are characterized to be 83.6 µWh/cm2 and up to 96 % retention after 10,000 cycles. These results significantly outperform those previously reported for paper-based counterparts. Overall, our work presents a facile and versatile strategy for assembling high-loading, paper-based flexible supercapacitors network architecture that can be employed in developing large-scale energy storage devices.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38048089

RESUMO

At present, there are very few reports on the combination of phosphorescence and fluorescence in the field of pollution prevention. A composite antibacterial agent was designed to store energy by using the phosphorescence effect of rare earth oxides, emit light at night, and stimulate 7-amino-4-methylcoumarin to produce fluorescence and prevent algae from adhering. When complexed with PVA, it exhibited excellent characteristics as an all-weather autocatalytic phosphorescence-fluorescence antifouling hydrogel. The rare earth phosphorescent powder was prepared in a high-temperature tube furnace, coated with SiO2 on the surface for waterproofing, and then grafted with 7-amino-4-methylcoumarin to obtain a composite antibacterial agent with a phosphorescence-fluorescence effect. The composite antibacterial agent was added with PVA to obtain a hydrogel, which exhibited bactericidal rates of more than 99.98% against both Gram-positive and Gram-negative bacteria after 48 h. The results of fluorescence staining showed that the coverage rate of dead bacteria reached 41.6% after 24 h. The tensile strength of the antifouling hydrogel is up to 1.49 MPa, which is strong enough for real marine environments. Moreover, the algae coverage area of the composite hydrogel under natural light was only 2.7%, representing a 10-fold reduction compared with the control. The antifouling hydrogel has good antipollution and algae suppression performance, which is due to the fact that the rare earth phosphorescent powder when exposed to sunlight can provide a light source to stimulate 7-amino-4-methylcoumarin fluorescence at night and thereby prevent algae adhesion. After testing in the marine field and the real sea test when wrapped in a fishing net, the excellent antifouling performance was demonstrated. The functional hydrogel has great application potential in the protection of seawater-exposed structures, such as bridges and bay ports.

5.
Cell Death Dis ; 14(11): 717, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923734

RESUMO

Age-associated hypercoagulability is accompanied by the increase of plasma levels of some coagulation factors including fibrinogen which may contribute to the increased risk of cardiovascular, cerebrovascular, and thrombotic diseases in elderly people. However, the underlying mechanism of increased plasma fibrinogen concentration during aging is still elusive. GRSF1 belongs to the heterogeneous nuclear ribonucleoproteins F/H (hnRNP F/H) subfamily. Here, we report that GRSF1 attenuates hypercoagulability via negative modulation of fibrinogen expression. We demonstrated that GRSF1 negatively regulated fibrinogen expression at both mRNA and protein levels. GRSF1 directly interacted with the coding region (CDS) of FGA, FGB, and FGG mRNAs, and decreased their stability thus mitigating fibrinogen expression. We further identified that only a few G-tracts within the Fib C domain of FGA, FGB, and FGG CDS and the qRRM2 domain of GRSF1 were required for their interaction. Moreover, we confirmed hypercoagulability and the decrease of GRSF1 expression level during mice aging. Functionally, GRSF1 overexpression in old mice liver decreased fibrinogen plasma level, reduced hypercoagulability, and mitigated blood coagulation activity, whereas GRSF1 knockdown in young mice liver increased fibrinogen plasma level and promoted blood coagulation activity. Collectively, our findings unveil a novel posttranscriptional regulation of fibrinogen by GRSF1 and uncover a critical role of GRSF1 in regulating blood coagulation activity.


Assuntos
Fibrinogênio , Trombofilia , Idoso , Animais , Humanos , Camundongos , Fibrinogênio/genética , Fibrinogênio/metabolismo , Regulação da Expressão Gênica , Proteínas de Ligação a Poli(A)/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Am J Bot ; 110(12): e16253, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938812

RESUMO

PREMISE: Moss sporophytes differ strongly in size and biomass partitioning, potentially reflecting reproductive and dispersal strategies. Understanding how sporophyte traits are coordinated is essential for understanding moss functioning and evolution. This study aimed to answer: (1) how the size and proportions of the sporophyte differ between moss species with and without a prominent central strand in the seta, (2) how anatomical and morphological traits of the seta are related, and (3) how sporophytic biomass relates to gametophytic biomass and nutrient concentrations. METHODS: We studied the relationships between seta anatomical and morphological traits, the biomass of seta, capsule, and gametophyte, and carbon, nitrogen, and phosphorus concentrations of 27 subtropical montane moss species. RESULTS: (1) Moss species with a prominent central strand in the seta had larger setae and heavier capsules than those without a prominent strand. (2) With increasing seta length, setae became thicker and more rounded for both groups, while in species with a prominent central strand, the ratio of transport-cell area to epidermal area decreased. (3) In both groups, mosses with greater gametophytic biomass tended to have heavier sporophytes, but nitrogen and phosphorus concentrations in the gametophyte were unrelated to sporophytic traits. CONCLUSIONS: Our study highlights that the central strand in the seta may have an important functional role and affect the allometry of moss sporophytes. The coordinated variations in sporophyte morphological and anatomical traits follow basic biomechanical principles of cylinder-like structures, and these traits relate only weakly to the gametophytic nutrient concentrations. Research on moss sporophyte functional traits and their relationships to gametophytes is still in its infancy but could provide important insights into their adaptative strategies.


Assuntos
Briófitas , Bryopsida , Células Germinativas Vegetais , Briófitas/anatomia & histologia , Nitrogênio , Fósforo
7.
Medicine (Baltimore) ; 102(42): e35675, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37861516

RESUMO

BACKGROUND: Clinacanthus nutans (for abbreviation thereafter) is often used as medicine in the form of fresh juice in the folk to treat many kinds of cancers, including renal cell carcinoma (RCC). It is speculated that its active ingredient may have heat sensitivity, but there are currently no reports on this aspect. Therefore, based on the folk application for fresh juice of C nutans, this study used metabonomics and network pharmacology to explore the material basis and mechanism of action of C nutans against RCC. METHODS: Firstly, untargeted metabolomics profiling was performed by Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry to screen the metabolites down-regulated by heat in the extract of C nutans. Secondly, we collected the targets of metabolites in the Swiss Target Prediction platform. In addition, the targets of RCC were obtained in the GeneCards database. The "component-target-disease" network was established by Cytoscape3.9.0 software. Then we constructed a protein-protein interaction network in the STRING network platform to screen core targets. The gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis of core targets were carried out to predict the relevant pathway of C nutans in the treatment of RCC. Finally, the molecular docking verification of the core targets were carried out. RESULTS: In this study, 35 potential active ingredients and 125 potential targets were obtained. And the core targets were Cellular tumor antigen p53, Signal transducer and activator of transcription 3, and so on. Then, 48 biological processes, 30 cell components, and 36 molecular functions were obtained by gene ontology enrichment analysis. Besides, 44 pathways were obtained by Kyoto encyclopedia of genes and genomes enrichment analysis, including Pathway in cancer, PI3K-Akt signal pathway, P53 signal pathway, and so on. The docking model between the core target and its corresponding components was stable. CONCLUSION: This research is based on the folk application of C nutans, showed its potential active ingredients by metabonomics, and predicted the potential mechanism of C nutans in the treatment of RCC by network pharmacology. It provides new references for follow-up research and new drug development.


Assuntos
Carcinoma de Células Renais , Medicamentos de Ervas Chinesas , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Renais/tratamento farmacológico , Medicina Tradicional Chinesa
8.
Carbohydr Polym ; 321: 121250, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739515

RESUMO

BNNS (boron nitride nanosheets)-CNF (cellulose nanofibrils) nanocomposite films have attracted increasing attention for advanced thermal management applications. However, the nanocomposite films reported so far generally suffer from unsatisfactory overall performance, especially for thermal conductivity and tensile strength. In this work, a nanocomposite film with excellent overall performance was prepared by using CCNF1.2 (carboxymethylated CNF with 1.2 mmol·g-1 carboxyl content) simultaneously as effective dispersant and reinforcement matrix for BNNS. The high aspect ratio of CCNF1.2 is primarily responsible for its excellent dispersion capability for BNNS, which provides strong steric hindrance repulsion force. Meanwhile, CCNF1.2 manifests the strongest hydrophobic-hydrophobic interactions with BNNS, and its carboxyl groups completely interact with the -OH of BNNS by hydrogen bonding. As a result, the BNNS-CCNF1.2 film (50 wt% BNNS) exhibits compacted aligned structure and superior comprehensive performance (125.0 MPa tensile strength, 17.3 W·m-1·K-1 in-plane thermal conductivity, and improved water resistance). This work demonstrates the effectiveness of CCNF in improving the overall performance of BNNS-CNF films and paves the way for their practical application in the advanced thermal management of next-generation electronic devices.

9.
Nanotechnology ; 35(4)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37669634

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs), as flexible and stretchable materials, have attracted considerable attention in the field of novel flexible electronics due to their excellent mechanical, optical, and electronic properties. Among the various TMD materials, atomically thin MoS2has become the most widely used material due to its advantageous properties, such as its adjustable bandgap, excellent performance, and ease of preparation. In this work, we demonstrated the practicality of a stacked wafer-scale two-layer MoS2film obtained by transferring multiple single-layer films grown using chemical vapor deposition. The MoS2field-effect transistor cell had a top-gated device structure with a (PI) film as the substrate, which exhibited a high on/off ratio (108), large average mobility (∼8.56 cm2V-1s-1), and exceptional uniformity. Furthermore, a range of flexible integrated logic devices, including inverters, NOR gates, and NAND gates, were successfully implemented via traditional lithography. These results highlight the immense potential of TMD materials, particularly MoS2, in enabling advanced flexible electronic and optoelectronic devices, which pave the way for transformative applications in future-generation electronics.

10.
MedComm (2020) ; 4(5): e346, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37614965

RESUMO

Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.

11.
ACS Appl Mater Interfaces ; 15(32): 38795-38807, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551684

RESUMO

Although many antibiofouling materials have been developed based on either bacterial-killing or antiadhesion effects, the integration of both the effects in one material remains challenging for achieving highly enhanced synergistic antibiofouling. In this study, we have explored a nano-CeO2-loaded double-network hydrogel by introducing CeO2 nanorods into a polyzwitterionic hydrogel via a simple one-pot method for achieving highly efficient antifouling. First, the CeO2 nanorods dispersed in the hydrogel, as an outstanding nanozyme, have highly efficient bacterial-killing performance. Second, the superhydrophilic polyzwitterionic hydrogel provides a dense hydrated layer on the surface and subsequently excellent broad-spectrum antiadhesion behavior. Most importantly, the bacterial killing and antiadhesion of this hydrogel can work synergistically to largely improve the marine-antifouling performance. Moreover, the double-network structure of this hydrogel, including the covalently cross-linked polyzwitterion hard network and the physically cross-linked poly(vinyl alcohol) soft network, can provide greatly improved mechanical properties (2.44 MPa of tensile strength reaches and 21.87 MPa of compressive strength). As a result, among the existing marine-antifouling hydrogels, the CeO2-loaded polyzwitterionic double-network hydrogel can achieve outstanding antifouling performance, which can sustain for over 6 months in a real marine environment. This work provides a promising marine-antifouling hydrogel, which will also inspire antifouling research of a new strategy and materials.

12.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569770

RESUMO

Hybrid rice breeding is an important strategy for enhancing grain yield. Breeding high-performance parental lines and identifying combining abilities is a top priority for hybrid breeding. Yuenongsimiao (YNSM) and its derivative variety Yuehesimiao (YHSM) are elite restorer lines with a high ability of fertility restoration, from which 67 derived hybrid combinations have been authorized to different degrees in more than 110 instances in China. In this study, we found that YNSM and YHSM contained three candidate restorer-of-fertility (Rf) genes, Rf3, Rf4, and Rf5/Rf1a, that might confer their restoration ability. Subsequently, we investigated heterosis and combining ability of YNSM and YHSM using 50 F1 hybrids from a 5 × 10 incomplete diallelic mating design. Our results indicated that hybrid combinations exhibited significant genetic differences, and the additive effects of the parental genes played a preponderant role in the inheritance of observed traits. The metrics of plant height (PH), 1000-grain weight (TGW), panicle length (PL), and the number of spikelets per panicle (NSP) were mainly affected by genetic inheritance with higher heritability. Notably, the general combining ability (GCA) of YHSM exhibited the largest positive effect on the number of grains per panicle (NGP), NSP, PL, and TGW. Thus, YHSM had the largest GCA effect on yield per plant (YPP). In addition, the GCA of YNSM exhibited a positive impact on YPP, mainly due to the critical contribution of seed setting percentage (SSP). Moreover, YNSM and YHSM exhibited negative GCA effects on PH, implying that YNSM and YHSM could effectively enhance plant lodging resistance by reducing the plant height of the derived hybrids. Remarkably, among the hybrids, Yuanxiang A/YNSM (YXA/YNSM), Shen 08S/Yuemeizhan (S08S/YMZ), and Quan 9311A/YHSM (Q9311A/YHSM) represent promising new combinations with a higher specific combining ability (SCA) effect value on YPP with a value more than 3.50. Our research thus highlights the promising application for the rational utilization of YNSM and YHSM in hybrid rice breeding.


Assuntos
Oryza , Grão Comestível/genética , Vigor Híbrido/genética , Oryza/genética , Fenótipo , Melhoramento Vegetal
13.
Int J Biol Sci ; 19(6): 1941-1954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063432

RESUMO

Rationale: Macrophages play a central role in the development and progression of nonalcoholic fatty liver disease (NAFLD). Studies have shown that Notch signaling mediated by transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBP-J), is implicated in macrophage activation and plasticity. Naturally, we asked whether Notch signaling in macrophages plays a role in NAFLD, whether regulating Notch signaling in macrophages could serve as a therapeutic strategy to treat NAFLD. Methods: Immunofluorescence staining was used to detect the changes of macrophage Notch signaling in the livers of human patients with NAFLD and choline deficient amino acid-defined (CDAA) diet-fed mice. Lyz2-Cre RBP-Jflox or wild-type C57BL/6 male mice were fed with CDAA or high fat diet (HFD) to induce experimental steatohepatitis or steatosis, respectively. Liver histology examinations were performed using hematoxylin-eosin (H&E), Oil Red O staining, Sirius red staining and immunohistochemistry staining for F4/80, Col1α1 and αSMA. The expression of inflammatory factors, fibrosis or lipid metabolism associated genes were evaluated by quantitative reverse transcription (qRT)-PCR, Western blot or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of liver samples was profiled by using RNA-seq. A hairpin-type decoy oligodeoxynucleotides (ODNs) for transcription factor RBP-J was loaded into bEnd.3-derived exosomes by electroporating. Mice with experimental NAFLD were treated with exosomes loading RBP-J decoy ODNs via tail vein injection. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. Results: The results showed that Notch signaling was activated in hepatic macrophages in human with NAFLD or in CDAA-fed mice. Myeloid-specific RBP-J deficiency decreased the expression of inflammatory factors interleukin-1 beta (IL1ß) and tumor necrosis factor alpha (TNFα), attenuated experimental steatohepatitis in mice. Furthermore, we found that Notch blockade attenuated lipid accumulation in hepatocytes by inhibiting the expression of IL1ß and TNFα in macrophages in vitro. Meanwhile, we observed that tail vein-injected exosomes were mainly taken up by hepatic macrophages in mice with steatohepatitis. RBP-J decoy ODNs delivered by exosomes could efficiently inhibit Notch signaling in hepatic macrophages in vivo and ameliorate steatohepatitis or steatosis in CDAA or HFD mice, respectively. Conclusions: Combined, macrophage RBP-J promotes the progression of NAFLD at least partially through regulating the expression of pro-inflammatory cytokines IL1ß and TNFα. Infusion of exosomes loaded with RBP-J decoy ODNs might be a promising therapy to treat NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição/metabolismo
14.
Sci Rep ; 13(1): 6335, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072409

RESUMO

Rice quality is one of the main targets of rice breeding and is a complex trait that involves grain appearance, milling, cooking, eating and nutritional quality. For many years, rice breeding has contended with imbalances in rice yield, quality, and disease and lodging resistance. Here, the milling and appearance quality, cooking quality, starch rapid viscosity analyzer (RVA) profile, and nutritional quality of grains of Yuenongsimiao (YNSM), an indica rice variety with high yield, high quality and disease resistance, were determined. YNSM had excellent appearance and quality, with low amylose contents and high gel consistency, and these characteristics exhibited significant correlations with the RVA profile such as hot paste viscosity, cool paste viscosity, setback viscosity, and consistency. Moreover, 5 genes related to length-to-width ratio (LWR) as well as the Wx gene were used to detect the main quality genotype of YNSM. The results showed that YNSM is a semilong-grain rice with a relatively high brown rice rate, milled rice rate and head rice yield and low chalkiness. The results indicated that the LWR and food quality of YNSM might be related to gs3, gw7 and Wxb. This study also reports the quality characteristics of hybrid rice developed using YNSM as a restorer line. The quality characteristics and the genotype for grain quality determined through gene analysis in YNSM may facilitate the breeding of new rice varieties that achieve a balance of grain yield, resistance and quality.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Grão Comestível/genética , Amilose/genética , Amido
15.
Nat Aging ; 3(3): 258-274, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118422

RESUMO

Aging leads to systemic metabolic disorders, including steatosis. Here we show that liver sinusoidal endothelial cell (LSEC) senescence accelerates liver sinusoid capillarization and promotes steatosis by reprogramming liver endothelial zonation and inactivating pericentral endothelium-derived C-kit, which is a type III receptor tyrosine kinase. Specifically, inhibition of endothelial C-kit triggers cellular senescence, perturbing LSEC homeostasis in male mice. During diet-induced nonalcoholic steatohepatitis (NASH) development, Kit deletion worsens hepatic steatosis and exacerbates NASH-associated fibrosis and inflammation. Mechanistically, C-kit transcriptionally inhibits chemokine (C-X-C motif) receptor (CXCR)4 via CCAAT enhancer-binding protein α (CEBPA). Blocking CXCR4 signaling abolishes LSEC-macrophage-neutrophil cross-talk and leads to the recovery of C-kit-deficient mice with NASH. Of therapeutic relevance, infusing C-kit-expressing LSECs into aged mice or mice with diet-induced NASH counteracts age-associated senescence and steatosis and improves the symptoms of diet-induced NASH by restoring metabolic homeostasis of the pericentral liver endothelium. Our work provides an alternative approach that could be useful for treating aging- and diet-induced NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Cirrose Hepática/metabolismo , Inflamação , Endotélio/metabolismo
16.
Int J Biol Macromol ; 241: 124512, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086760

RESUMO

Feather keratin has a complex structure, hard texture and must be treated to improve its bioavailability. In this paper, according to the designability of DES, some deep eutectic solvents (DESs) were prepared to degrade feathers and extract keratin. Calculations by quantum chemical methods showed that DESs were considered molecular scissors with the ability to break initial hydrogen bonds and form new bonds only when the Gibbs free energy change for the degradation process was ΔG < 0, i.e., hydrogen binding energy ΔE < -0.3038 kcal/mol. Then, the degradation mechanism was predicted to provide guidance for the molecular design of DES. Finally, experimental results showed that the same ratio of choline chloride-based DESs had higher catalytic performance, in which [ChCl][P][ZnCl2] 1:5:2 was used with a high yield of keratin of 85.46 %. DES had a high catalytic performance after multiple recycling cycles and this method has no H2S gas generation, which improves the atomic utilization.


Assuntos
Solventes Eutéticos Profundos , Plumas , Animais , Solventes/química , Queratinas , Colina/química
17.
Signal Transduct Target Ther ; 8(1): 94, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864030

RESUMO

Nonalcoholic fatty liver disease (NAFLD) which is a leading cause of chronic liver diseases lacks effective treatment. Tamoxifen has been proven to be the first-line chemotherapy for several solid tumors in clinics, however, its therapeutic role in NAFLD has never been elucidated before. In vitro experiments, tamoxifen protected hepatocytes against sodium palmitate-induced lipotoxicity. In male and female mice fed with normal diets, continuous tamoxifen administration inhibited lipid accumulation in liver, and improved glucose and insulin intolerance. Short-term tamoxifen administration largely improved hepatic steatosis and insulin resistance, however, the phenotypes manifesting inflammation and fibrosis remained unchanged in abovementioned models. In addition, mRNA expressions of genes related to lipogenesis, inflammation, and fibrosis were downregulated by tamoxifen treatment. Moreover, the therapeutic effect of tamoxifen on NAFLD was not gender or ER dependent, as male and female mice with metabolic disorders shared no difference in response to tamoxifen and ER antagonist (fulvestrant) did not abolish its therapeutic effect as well. Mechanistically, RNA sequence of hepatocytes isolated from fatty liver revealed that JNK/MAPK signaling pathway was inactivated by tamoxifen. Pharmacological JNK activator (anisomycin) partially deprived the therapeutic role of tamoxifen in treating hepatic steatosis, proving tamoxifen improved NAFLD in a JNK/MAPK signaling-dependent manner.


Assuntos
Fígado Gorduroso , Intolerância à Glucose , Resistência à Insulina , Animais , Feminino , Masculino , Camundongos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Inflamação , Tamoxifeno/farmacologia , MAP Quinase Quinase 4/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-36834306

RESUMO

The ecological environment is the basis of high-quality economic development, and the coordinated development of the two is of great significance for promoting regional sustainable development. This study takes 31 cities in the middle reaches of the Yangtze River as samples, constructs an evaluation index system of the ecological environment (EE) and high-quality economic development (HQED), and uses a comprehensive evaluation method and a coupling coordination degree model to determine the development level, coupling coordination relationship, interaction coordination relationship and space-time evolution characteristics of the two. The results show that: (1) In the sample period, the overall level of EE and HQED increased simultaneously, but the two indexes of each city showed obvious heterogeneity. (2) EE and HQED have a coupling coordination relationship; the coupling degree (CD) is in a high coupling stage, and the coupling coordination degree (CCD) is in a good and moderate coordination state. (3) In the interactive coordination relationship, the CCD sequence of subsystems is coordinated development > shared development > innovative development > open development, and pressure subsystem > response subsystem > status subsystem. This study provides a new evaluation perspective for EE and HQED and puts forward suggestions for their coupling and coordinated development.


Assuntos
Desenvolvimento Econômico , Rios , Cidades , Desenvolvimento Sustentável , China
19.
ACS Appl Mater Interfaces ; 15(2): 3621-3632, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598168

RESUMO

Microelectronic devices are developing rapidly in portability, wearability, and implantability. This puts forward an urgent requirement for the delicate deposition process of materials. Electrohydrodynamic printing has attracted academic and industrial attention in preparing ultrahigh-density microelectronic devices as a new noncontact, direct graphic, and low-loss thin film deposition process. In this work, a printed graphene with narrow line width is realized by combining the electrohydrodynamic printing and surface treatment. The line width of printed graphene on the hydrophobic treatment surface reduced from 80 to 28 µm. The resistivity decreased from 0.949 to 0.263 Ω·mm. Unexpectedly, hydrophobic treatment can effectively induce random stacking of electrohydrodynamic printed graphene, which avoids parallel stacking and agglomeration of graphene sheets. The performance of printed graphene is thus effectively improved. After optimization, a graphene planar supercapacitor with a printed line width of 28 µm is successfully obtained. Its capacitance can reach 5.39 mF/cm2 at 50 mV/s, which is twice higher than that of the untreated devices. The device maintains 84.7% capacitance after 5000 cycles. This work provides a reference for preparing microelectronic devices by ultrahigh precision printing and a new direction for optimizing two-dimensional material properties through stacking adjustment.

20.
ACS Nano ; 16(12): 20705-20713, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36480448

RESUMO

Due to the growing sustainability and health requirements, structural color materials fabricated with functional natural polymers have attracted increasing attention in advanced optical and biomedical fields. Lignin has many attractive features such as great biocompatibility, ultraviolet resistance, antioxidant property, and thermostability, making it a promising natural resource to be fabricated as functional structural color materials. However, to date, the utilization of lignin as the building block for structural color materials is still a challenge due to its disordered structure. Herein, we present a strategy to transform disordered lignin into ordered "photonic lignin", in which monodisperse lignin colloidal spheres are prepared via solvent/antisolvent self-assembly, and then the periodic structure is constructed by centrifugal effect. The photonic lignin exhibits structural colors that are tunable by modulating the diameter of lignin colloidal spheres. We further demonstrate the application of photonic lignin as a natural polymer-based coating that shows bright, angle-independent, and stimuli-responsive structural colors. Moreover, the cytotoxicity assay indicates the excellent biocompatibility of photonic lignin with human skin, blood vessels, digestive systems, and other tissues, which demonstrates the great potential of photonic lignin in the applications such as implanted/wearable optical devices, advanced cosmetics, and smart food packaging.


Assuntos
Lignina , Fótons , Humanos , Lignina/farmacologia , Polímeros/química , Cor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...