Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38978585

RESUMO

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.

2.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854123

RESUMO

Resistance to endocrine therapies remains a major clinical hurdle in breast cancer. Mutations to estrogen receptor alpha (ERα) arise after continued therapeutic pressure. Next generation selective estrogen receptor modulators and degraders/downregulators (SERMs and SERDs) show clinical efficacy, but responses are often non-durable. A tyrosine to serine point mutation at position 537 in the ERα ligand binding domain (LBD) is among the most common and most pathogenic alteration in this setting. It enables endocrine therapy resistance by superceding intrinsic structural-energetic gatekeepers of ER hormone-dependence, it enhances metastatic burden by enabling neomorphic ER-dependent transcriptional programs, and it resists SERM and SERD inhibiton by reducing their binding affinities and abilities to antagonize transcriptional coregulator binding. However, a subset of SERMs and SERDs can achieve efficacy by adopting poses that force the mutation to engage in a new interaction that favors the therapeutic receptor antagonist conformation. We previously described a chemically unconventional SERM, T6I-29, that demonstrates significant anti-proliferative activities in Y537S ERα breast cancer cells. Here, we use a comprehensive suite of structural-biochemical, in vitro, and in vivo approaches to better T6I-29's activities in breast cancer cells harboring Y537S ERα. RNA sequencing in cells treated with T6I-29 reveals a neomorphic downregulation of DKK1, a secreted glycoprotein known to play oncogenic roles in other cancers. Importantly, we find that DKK1 is significantly enriched in ER+ breast cancer plasma compared to healthy controls. This study shows how new SERMs and SERDs can identify new therapeutic pathways in endocrine-resistant ER+ breast cancers.

3.
NPJ Breast Cancer ; 8(1): 130, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517522

RESUMO

Estrogen receptor alpha (ERα) is a ligand-dependent master transcriptional regulator and key driver of breast cancer pathology. Small molecule hormones and competitive antagonists favor unique ERα conformational ensembles that elicit ligand-specific transcriptional programs in breast cancer and other hormone-responsive tissues. By affecting disparate ligand binding domain structural features, unconventional ligand scaffolds can redirect ERα genomic binding patterns to engage novel therapeutic transcriptional programs. To improve our understanding of these ERα structure-transcriptional relationships, we develop a series of chemically unconventional antagonists based on the antiestrogens elacestrant and lasofoxifene. High-resolution x-ray co-crystal structures show that these molecules affect both classical and unique structural motifs within the ERα ligand binding pocket. They show moderately reduced antagonistic potencies on ERα genomic activities but are effective anti-proliferative agents in luminal breast cancer cells. Interestingly, they favor a 4-hydroxytamoxifen-like accumulation of ERα in breast cancer cells but lack uterotrophic activities in an endometrial cell line. Importantly, RNA sequencing shows that the lead molecules engage transcriptional pathways similar to the selective estrogen receptor degrader fulvestrant. This advance shows that fulvestrant-like genomic activities can be achieved without affecting ERα accumulation in breast cancer cells.

4.
Nat Commun ; 9(1): 2368, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915250

RESUMO

Complex tissue-specific and cell-specific signaling by the estrogen receptor (ER) frequently leads to the development of resistance to endocrine therapy for breast cancer. Pure ER antagonists, which completely lack tissue-specific agonist activity, hold promise for preventing and treating endocrine resistance, however an absence of structural information hinders the development of novel candidates. Here we synthesize a small panel of benzopyrans with variable side chains to identify pure antiestrogens in a uterotrophic assay. We identify OP-1074 as a pure antiestrogen and a selective ER degrader (PA-SERD) that is efficacious in shrinking tumors in a tamoxifen-resistant xenograft model. Biochemical and crystal structure analyses reveal a structure activity relationship implicating the importance of a stereospecific methyl on the pyrrolidine side chain of OP-1074, particularly on helix 12.


Assuntos
Antineoplásicos/farmacologia , Benzopiranos/farmacologia , Antagonistas de Estrogênios/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Pirrolidinas/farmacologia , Fosfatase Alcalina/análise , Animais , Antineoplásicos/análise , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Benzopiranos/síntese química , Benzopiranos/química , Benzopiranos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Antagonistas de Estrogênios/análise , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/uso terapêutico , Receptor alfa de Estrogênio/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Conformação Proteica em alfa-Hélice/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/uso terapêutico , Moduladores Seletivos de Receptor Estrogênico/análise , Moduladores Seletivos de Receptor Estrogênico/síntese química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Estereoisomerismo , Útero/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA