Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202404292, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860426

RESUMO

Metal phosphides have been hailed as potential replacements for scarce noble metal catalysts in many aspects of the hydrogen economy from hydrogen evolution to selective hydrogenation reactions. But the need for dangerous and costly phosphorus precursors, limited support dispersion, and low stability of the metal phosphide surface toward oxidation substantially lower the appeal and performance of metal phosphides in catalysis. We show here that a 1-step procedure that relies on safe and cheap precursors can furnish an air-stable Ni2P/Al2O3 catalyst containing 3.2 nm nanoparticles. Ni2P/Al2O3 1-step is kinetically competitive with the palladium-based Lindlar catalyst in selective hydrogenation catalysis, and a loading corresponding to 4 ppm Ni was sufficient to convert 0.1 mol alkyne. The 1-step synthetic procedure alters the surface ligand speciation of Ni2P/Al2O3, which protects the nanoparticle surface from oxidation, and ensures that 85 % of the initial catalytic activity was retained after the catalyst was stored under air for 1.5 years. Preparation of Ni2P on a variety of supports (silica, TiO2, SBA-15, ZrO2, C and HAP) as well as Co2P/Al2O3, Co2P/TiO2 and bimetallic NiCoP/TiO2 demonstrates the generality with which supported metal phosphides can be accessed in a safe and straightforward fashion with small sizes and high dispersion.

3.
Nat Chem ; 16(3): 380-388, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38123842

RESUMO

Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.


Assuntos
Cisteína , Compostos de Sulfidrila , Cisteína/química , Compostos de Sulfidrila/química , Proteínas/química , Aminas/química , Proteômica
4.
Angew Chem Int Ed Engl ; 62(23): e202219127, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856294

RESUMO

The selective activation of C-F bonds under mild reaction conditions remains an ongoing challenge of bond activation. Here, we present a cooperative [Rh/P(O)nBu2 ] template for catalytic hydrodefluorination (HDF) of perfluoroarenes. In addition to substrates presenting electron-withdrawing functional groups, the system showed an exceedingly rare tolerance for electron-donating functionalities and heterocycles. The high chemoselectivity of the catalyst and its readiness to be deployed at a preparative scale illustrate its practicality. Empirical mechanistic studies and a density functional theory (DFT) study have identified a rhodium(I) dihydride complex as a catalytically relevant species and the determining role of phosphine oxide as a cooperative fragment. Altogether, we demonstrate that molecular templates based on these design elements can be assembled to create catalysts with increased reactivity for challenging bond activations.

5.
Nat Commun ; 14(1): 570, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732515

RESUMO

The chemical reactions that formed the building blocks of life at origins required catalysts, whereby the nature of those catalysts influenced the type of products that accumulated. Recent investigations have shown that at 100 °C awaruite, a Ni3Fe alloy that naturally occurs in serpentinizing systems, is an efficient catalyst for CO2 conversion to formate, acetate, and pyruvate. These products are identical with the intermediates and products of the acetyl-CoA pathway, the most ancient CO2 fixation pathway and the backbone of carbon metabolism in H2-dependent autotrophic microbes. Here, we show that Ni3Fe nanoparticles prepared via the hard-templating method catalyze the conversion of H2 and CO2 to formate, acetate and pyruvate at 25 °C under 25 bar. Furthermore, the 13C-labeled pyruvate can be further converted to acetate, parapyruvate, and citramalate over Ni, Fe, and Ni3Fe nanoparticles at room temperature within one hour. These findings strongly suggest that awaruite can catalyze both the formation of citramalate, the C5 product of pyruvate condensation with acetyl-CoA in microbial carbon metabolism, from pyruvate and the formation of pyruvate from CO2 at very moderate reaction conditions without organic catalysts. These results align well with theories for an autotrophic origin of microbial metabolism under hydrothermal vent conditions.

6.
Angew Chem Int Ed Engl ; 61(36): e202205515, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759682

RESUMO

An adaptive catalytic system that provides control over the nitroarene hydrogenation network to prepare a wide range of aniline and hydroxylamine derivatives is presented. This system takes advantage of a delicate interplay between a rhodium(III) center and a Lewis acidic borane introduced in the secondary coordination sphere of the metal. The high chemoselectivity of the catalyst in the presence of various potentially vulnerable functional groups and its readiness to be deployed at a preparative scale illustrate its practicality. Mechanistic studies and density functional theory (DFT) methods were used to shed light on the mode of functioning of the catalyst and elucidate the origin of adaptivity. The competition for interaction with boron between a solvent molecule and a substrate was found crucial for adaptivity. When operating in THF, the reduction network stops at the hydroxylamine platform, whereas the reaction can be directed to the aniline platform in toluene.

7.
J Am Chem Soc ; 144(21): 9421-9433, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604643

RESUMO

Aluminum oxides, oxyhydroxides, and hydroxides are important in different fields of application due to their many attractive properties. However, among these materials, tohdite (5Al2O3·H2O) is probably the least known because of the harsh conditions required for its synthesis. Herein, we report a straightforward methodology to synthesize tohdite nanopowders (particle diameter ∼13 nm, specific surface area ∼102 m2 g-1) via the mechanochemically induced dehydration of boehmite (γ-AlOOH). High tohdite content (about 80%) is achieved upon mild ball milling (400 rpm for 48 h in a planetary ball mill) without process control agents. The addition of AlF3 can promote the crystallization of tohdite by preventing the formation of the most stable α-Al2O3, resulting in the formation of almost phase-pure tohdite. The availability of easily accessible tohdite samples allowed comprehensive characterization by powder X-ray diffraction, total scattering analysis, solid-state NMR (1H and 27Al), N2-sorption, electron microscopy, and simultaneous thermal analysis (TG-DSC). Thermal stability evaluation of the samples combined with structural characterization evidenced a low-temperature transformation sequence: 5Al2O3·H2O → κ-Al2O3 → α-Al2O3. Surface characterization via DRIFTS, ATR-FTIR, D/H exchange experiments, pyridine-FTIR, and NH3-TPD provided further insights into the material properties.

8.
Phys Chem Chem Phys ; 24(16): 9608-9618, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35403649

RESUMO

A new probability score-named χ-probability-is introduced for evaluating the fit of mixed NMR datasets to calculate molecular model ensembles, in order to answer challenging structural questions such as the determination of stereochemical configurations. Similar to the DP4 parameter, the χ-probability is based on Bayes theorem and expresses the probability that an experimental NMR dataset fits to a given individual within a finite set of candidate structures or configurations. Here, the χ-probability is applied to single out the correct configuration in four example cases, with increasing complexity and conformational mobility. The NMR data (which include RDCs, NOE distances and 3J couplings) are calculated from MDOC (Molecular Dynamics with Orientational Constraints) trajectories and are investigated against experimentally measured data. It is demonstrated that this approach singles out the correct stereochemical configuration with probabilities more than 98%, even for highly mobile molecules. In more demanding cases, a decisive χ-probability test requires that the datasets include high-quality NOE distances in addition to RDC values.


Assuntos
Imageamento por Ressonância Magnética , Simulação de Dinâmica Molecular , Teorema de Bayes , Espectroscopia de Ressonância Magnética , Conformação Molecular
9.
J Am Chem Soc ; 143(35): 14402-14414, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34448391

RESUMO

Many polycyclic marine alkaloids are thought to derive from partly reduced macrocyclic alkylpyridine derivatives via a transannular Diels-Alder reaction that forms their common etheno-bridged diaza-decaline core ("Baldwin-Whitehead hypothesis"). Rather than trying to emulate this biosynthesis pathway, a route to these natural products following purely chemical logic was pursued. Specifically, a Michael/Michael addition cascade provided rapid access to this conspicuous tricyclic scaffold and allowed different handles to be introduced at the bridgehead quarternary center. This flexibility opened opportunities for the formation of the enveloping medium-sized and macrocyclic rings. Ring closing alkyne metathesis (RCAM) proved most reliable and became a recurrent theme en route to keramaphidin B, ingenamine, xestocyclamine A, and nominal njaoamine I (the structure of which had to be corrected in the aftermath of the synthesis). Best results were obtained with molybdenum alkylidyne catalysts endowed with (tripodal) silanolate ligands, which proved fully operative in the presence of tertiary amines, quinoline, and other Lewis basic sites. RCAM was successfully interlinked with macrolactamization, an intricate hydroboration/protonation/alkyl-Suzuki coupling sequence, or ring closing olefin metathesis (RCM) for the closure of the second lateral ring; the use of RCM for the formation of an 11-membered cycle is particularly noteworthy. Equally rare are RCM reactions that leave a pre-existing triple bond untouched, as the standard ruthenium catalysts are usually indiscriminative vis-à-vis the different π-bonds. Of arguably highest significance, however, is the use of two consecutive or even concurrent RCAM reactions en route to nominal njaoamine I as the arguably most complex of the chosen targets.


Assuntos
Alcaloides/síntese química , Piridinas/síntese química , Catálise , Complexos de Coordenação/química , Ciclização , Molibdênio/química , Estereoisomerismo
10.
Magn Reson Chem ; 59(8): 792-803, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33729627

RESUMO

The nuclear magnetic resonance extracted data (NMReDATA) format has been proposed as a way to store, exchange, and disseminate nuclear magnetic resonance (NMR) data and physical and chemical metadata of chemical compounds. In this paper, we report on analytical workflows that take advantage of the uniform and standardized NMReDATA format. We also give access to a repository of sample data, which can serve for validating software packages that encode or decode files in NMReDATA format.


Assuntos
Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Análise de Dados , Software
11.
RSC Adv ; 11(59): 37383-37391, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496436

RESUMO

Proazaphosphatranes are intriguing ligand architectures comprising a bicyclic cage of flexible nature. They can undergo structural deformations due to transannulation while displaying modular electronic and steric properties. Herein, we report the synthesis and coordination chemistry of rhodium(i) complexes bearing a tris(isopropyl)-azaphosphatrane (TiPrAP) ligand. The molecular structure of the primary complex (1) revealed the insertion of the metal center into a P-N bond of the ligand. The addition of a Lewis acid, i.e., lithium chloride, promoted the dynamic behavior of the complex in the solution, which was studied by state-of-the-art NMR spectroscopy. Substituting the cyclooctadiene ligand at the metal center with triphenylphosphine or 2-pyridyldiphenylphosphine unveiled the adaptive nature of the TiPrAP backbone capable of switching its axial nitrogen from interacting with the phosphorus atom to coordinate the rhodium center. This led the entire ligand edifice to change its binding to rhodium from a bidentate to tridentate coordination. Altogether, our study shows that introducing a TiPrAP ligand allows for unique molecular control of the immediate environment of the metal center, opening perspectives in controlled bond activation and catalysis.

12.
RSC Adv ; 10(35): 20928-20938, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35517752

RESUMO

In this study the structure directing effect of a gemini-type piperidine-based multi-ammonium surfactant during hydrothermal zeolite synthesis was investigated for two cases: with and without a source of aluminum. The absence of an aluminum source led to the formation of an amorphous mesoporous MCM-48 type silica material, while the presence of aluminum guaranteed the formation of zeolite beta with a hierarchical pore system. The two opposing cases were studied in a time and temperature-dependent manner. The mobility and through space interaction of these large surfactant molecules were studied by liquid state nuclear magnetic resonance (NMR) at a temperature relevant to hydrothermal synthesis (363 K) in pure water and upon addition of an aluminum and silicon source. In the gel state, at different stages of aging and hydrothermal synthesis, low angle X-ray diffraction (XRD) and solid state magic angle spinning nuclear magnetic resonance (1H MAS NMR) spectrometry determined the developing order within the system. At each of these different synthesis steps the respective intermediate materials were calcined. Transmission electron microscopy then allowed closer inspection of the locally developing mesoscopic order, while N2 physisorption was used to follow the evolution of porosity.

13.
Molecules ; 24(23)2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31816930

RESUMO

The downscaling of NMR tensorial interactions, such as dipolar couplings, from tens of kilohertz to a few hertz in low-order media is the result of dynamics spanning several orders of magnitudes, including vibrational modes (~ns-fs), whole-molecule reorientation (~ns) and higher barrier internal conformational exchange (

Assuntos
Produtos Biológicos/química , Bibliotecas de Moléculas Pequenas/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Orientação Espacial
14.
J Am Chem Soc ; 141(8): 3414-3418, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30768254

RESUMO

We report a catalytic asymmetric Nazarov cyclization of simple, acylic, alkyl-substituted divinyl ketones using our recently disclosed strong and confined imidodiphosphorimidate Brønsted acids. The corresponding monocyclic cyclopentenones are formed in good yields and excellent regio-, diastereo-, and enantioselectivities. Further, the chemical utility of the obtained enantiopure cyclopentenones is demonstrated.

15.
Nat Commun ; 10(1): 770, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770804

RESUMO

When developing a synthetic methodology, chemists generally optimize a single substrate and then explore the substrate scope of their method. This approach has led to innumerable and widely-used chemical reactions. However, it frequently provides methods that only work on model substrate-like compounds. Perhaps worse, reaction conditions that would enable the conversion of other substrates may be missed. We now show that a different approach, originally proposed by Kagan, in which a collection of structurally distinct substrates are evaluated in a single reaction vessel, can not only provide information on the substrate scope at a much earlier stage in methodology development, but even lead to a broadly applicable synthetic methodology. Using this multi-substrate screening approach, we have identified an efficient and stereoselective imidodiphosphorimidate organocatalyst for scalable Diels-Alder reactions of cyclopentadiene with different classes of α,ß-unsaturated aldehydes.

16.
Magn Reson Chem ; 56(12): 1176-1182, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30091791

RESUMO

In this study, aqueous blends of cromolyn and gelatin ("cromogels") are introduced as anisotropic media. The addition of gelatin enables an advantageous adjustability of the strength, the homogeneity, and the stability of the cromolyn alignment. The mechanical stability of these polymer-dispersed liquid crystals is further utilized by stacking layers of D2 O/cromolyn/gelatin with varying component ratio. The resulting distinct phases with correspondingly different degrees of alignment can be targeted by spatially resolved NMR techniques. As a case study, we investigated sucrose in a two-phase system with neat D2 O and analyte layered over the anisotropic medium. A recently presented spatially selective coupled-type HSQC experiment allows the determination of one-bond C-H splitting in both phases.

17.
Magn Reson Chem ; 56(8): 703-715, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29656574

RESUMO

Even though NMR has found countless applications in the field of small molecule characterization, there is no standard file format available for the NMR data relevant to structure characterization of small molecules. A new format is therefore introduced to associate the NMR parameters extracted from 1D and 2D spectra of organic compounds to the proposed chemical structure. These NMR parameters, which we shall call NMReDATA (for nuclear magnetic resonance extracted data), include chemical shift values, signal integrals, intensities, multiplicities, scalar coupling constants, lists of 2D correlations, relaxation times, and diffusion rates. The file format is an extension of the existing Structure Data Format, which is compatible with the commonly used MOL format. The association of an NMReDATA file with the raw and spectral data from which it originates constitutes an NMR record. This format is easily readable by humans and computers and provides a simple and efficient way for disseminating results of structural chemistry investigations, allowing automatic verification of published results, and for assisting the constitution of highly needed open-source structural databases.


Assuntos
Armazenamento e Recuperação da Informação/normas , Espectroscopia de Ressonância Magnética/estatística & dados numéricos , Compostos Orgânicos/química , Bases de Dados de Compostos Químicos/estatística & dados numéricos , Software/normas
18.
Science ; 359(6383): 1501-1505, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29599238

RESUMO

The activation of olefins for asymmetric chemical synthesis traditionally relies on transition metal catalysts. In contrast, biological enzymes with Brønsted acidic sites of appropriate strength can protonate olefins and thereby generate carbocations that ultimately react to form natural products. Although chemists have recently designed chiral Brønsted acid catalysts to activate imines and carbonyl compounds, mimicking these enzymes to protonate simple olefins that then engage in asymmetric catalytic reactions has remained a substantial synthetic challenge. Here, we show that a class of confined and strong chiral Brønsted acids enables the catalytic asymmetric intramolecular hydroalkoxylation of unbiased olefins. The methodology gives rapid access to biologically active 1,1-disubstituted tetrahydrofurans, including (-)-Boivinianin A.

19.
J Am Chem Soc ; 140(11): 3863-3866, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29521088

RESUMO

Hydride state intermediates are known to occur in various hydrogen conversion enzymes, including the highly efficient [FeFe] hydrogenases. The intermediate state involving a terminal iron-bound hydride has been recognized as crucial for the catalytic mechanism, but its occurrence has up to now eluded unequivocal proof under (near) physiological conditions. Here we show that the terminal hydride in the [FeFe] hydrogenase from Chlamydomonas reinhardtii can be directly detected using solution 1H NMR spectroscopy at room temperature, opening new avenues for detailed in situ investigations under catalytic conditions.

20.
J Am Chem Soc ; 140(8): 3156-3169, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29429344

RESUMO

The hydrogenation of internal alkynes with [Cp*Ru]-based catalysts is distinguished by an unorthodox stereochemical course in that E-alkenes are formed by trans-delivery of the two H atoms of H2. A combined experimental and computational study now provides a comprehensive mechanistic picture: a metallacyclopropene (η2-vinyl complex) is primarily formed, which either evolves into the E-alkene via a concerted process or reacts to give a half-sandwich ruthenium carbene; in this case, one of the C atoms of the starting alkyne is converted into a methylene group. This transformation represents a formal gem-hydrogenation of a π-bond, which has hardly any precedent. The barriers for trans-hydrogenation and gem-hydrogenation are similar: whereas DFT predicts a preference for trans-hydrogenation, CCSD(T) finds gem-hydrogenation slightly more facile. The carbene, once formed, will bind a second H2 molecule and evolve to the desired E-alkene, a positional alkene isomer or the corresponding alkane; this associative pathway explains why double bond isomerization and over-reduction compete with trans-hydrogenation. The computed scenario concurs with para-hydrogen-induced polarization transfer (PHIP) NMR data, which confirm direct trans-delivery of H2, the formation of carbene intermediates by gem-hydrogenation, and their evolution into product and side products alike. Propargylic -OR (R = H, Me) groups exert a strong directing and stabilizing effect, such that several carbene intermediates could be isolated and characterized by X-ray diffraction. The gathered information spurred significant preparative advances: specifically, highly selective trans-hydrogenations of propargylic alcohols are reported, which are compatible with many other reducible functional groups. Moreover, the ability to generate metal carbenes by gem-hydrogenation paved the way for noncanonical hydrogenative cyclopropanations, ring expansions, and cycloadditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...