Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Bone Miner Res ; 39(3): 298-314, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38477790

RESUMO

Osteocytes sense and respond to mechanical force by controlling the activity of other bone cells. However, the mechanisms by which osteocytes sense mechanical input and transmit biological signals remain unclear. Voltage-sensitive calcium channels (VSCCs) regulate calcium (Ca2+) influx in response to external stimuli. Inhibition or deletion of VSCCs impairs osteogenesis and skeletal responses to mechanical loading. VSCC activity is influenced by its auxiliary subunits, which bind the channel's α1 pore-forming subunit to alter intracellular Ca2+ concentrations. The α2δ1 auxiliary subunit associates with the pore-forming subunit via a glycosylphosphatidylinositol anchor and regulates the channel's calcium-gating kinetics. Knockdown of α2δ1 in osteocytes impairs responses to membrane stretch, and global deletion of α2δ1 in mice results in osteopenia and impaired skeletal responses to loading in vivo. Therefore, we hypothesized that the α2δ1 subunit functions as a mechanotransducer, and its deletion in osteocytes would impair skeletal development and load-induced bone formation. Mice (C57BL/6) with LoxP sequences flanking Cacna2d1, the gene encoding α2δ1, were crossed with mice expressing Cre under the control of the Dmp1 promoter (10 kb). Deletion of α2δ1 in osteocytes and late-stage osteoblasts decreased femoral bone quantity (P < .05) by DXA, reduced relative osteoid surface (P < .05), and altered osteoblast and osteocyte regulatory gene expression (P < .01). Cacna2d1f/f, Cre + male mice displayed decreased femoral strength and lower 10-wk cancellous bone in vivo micro-computed tomography measurements at the proximal tibia (P < .01) compared to controls, whereas Cacna2d1f/f, Cre + female mice showed impaired 20-wk cancellous and cortical bone ex vivo micro-computed tomography measurements (P < .05) vs controls. Deletion of α2δ1 in osteocytes and late-stage osteoblasts suppressed load-induced calcium signaling in vivo and decreased anabolic responses to mechanical loading in male mice, demonstrating decreased mechanosensitivity. Collectively, the α2δ1 auxiliary subunit is essential for the regulation of osteoid-formation, femur strength, and load-induced bone formation in male mice.


The ability of bone to sense and respond to forces generated during daily physical activities is essential to skeletal health. Although several bone cell types contribute to the maintenance of bone health, osteocytes are thought to be the primary mechanosensitive cells; however, the mechanisms through which these cells perceive mechanical stimuli remains unclear. Previous work has shown that voltage sensitive calcium channels are necessary for bone to sense mechanical force; yet the means by which those channels translate the physical signal into a biochemical signal is unclear. Data within this manuscript demonstrate that the extracellular α2δ1 subunit of voltage sensitive calcium channels is necessary for load-induced bone formation as well as to enable calcium influx within osteocytes. As this subunit enables physical interactions of the channel pore with the extracellular matrix, our data demonstrate the need for the α2δ1 subunit for mechanically induced bone adaptation, thus serving as a physical conduit through which mechanical signals from the bone matrix are transduced into biochemical signals by enabling calcium influx into osteocytes.


Assuntos
Osteócitos , Osteogênese , Camundongos , Masculino , Feminino , Animais , Osteócitos/metabolismo , Osteogênese/genética , Cálcio/metabolismo , Microtomografia por Raio-X , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
2.
JBMR Plus ; 8(2): ziad008, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38505532

RESUMO

Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.

3.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38038968

RESUMO

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Lipólise/genética , Metabolismo dos Lipídeos , Lipase/genética , Lipase/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
4.
Methods Mol Biol ; 2749: 25-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38133771

RESUMO

Resident stem/progenitor cells within the secretory salivary glands offer a potential therapeutic resource for use in the regeneration of salivary glands needed to restore saliva production in patients with chronic xerostomia, or dry mouth. Methods were developed previously to isolate human stem/progenitor cells (hS/PCs) from major salivary glands (parotid/submandibular). Abundant minor salivary glands located in readily accessible locations in the oral cavity and lip could provide an additional valuable therapeutic resource. An advantage of this cell resource is that these minor glands about the size of grape seeds can be harvested from healthy donors using minimally invasive surgical procedures. The disadvantage of using minor glands is that they contain many fewer cells than do major glands, and thus harvested cells need to be expanded in the lab to create a therapeutic resource. While earlier work has described isolation of proliferative cell populations from minor salivary glands that could be used in regenerative medicine, most of these expanded cells possess properties of mesenchymal cells rather than the epithelial population that secretes salivary products.Here, we describe in detail our recently established methods to isolate and expand hS/PCs isolated from human labial minor salivary glands. Expanded hS/PC populations are epithelial assessed by their expression of epithelial progenitor markers K5 and K14. Like expandable cell populations previously isolated from the major salivary glands, these cells also express nuclear p63, consistent with their ability to be expanded after explant culture. When hS/PCs with these properties are encapsulated into a customized 3D biomimetic hyaluronic acid-based hydrogel, they will assemble into microstructures that retain some progenitor markers while also beginning to differentiate. The increased expression of secreted mucin MUC-7 was used to demonstrate differentiation and secretory potential in assembled hS/PC microstructures. Compared to hS/PCs from major glands, those from minor salivary glands tend to be more heterogeneous in early passage; thus, use of K5/K14/p63 as an early quality assessment tool is highly recommended. Additionally, hS/PCs from minor glands are sensitive to stress and if mishandled will demonstrate a stress response that leads to their transitioning to a flat, squamous cell-like appearance that is of limited utility in regenerative medicine applications. We conclude that properly handled hS/PCs from minor salivary glands represent a powerful new source of therapeutic cells for applications including treating patients with chronic xerostomia.


Assuntos
Glândulas Salivares Menores , Xerostomia , Humanos , Glândulas Salivares , Saliva , Xerostomia/terapia , Células-Tronco
5.
bioRxiv ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37905032

RESUMO

Aged individuals and astronauts experience bone loss despite rigorous physical activity. Bone mechanoresponse is in-part regulated by mesenchymal stem cells (MSCs) that respond to mechanical stimuli. Direct delivery of low intensity vibration (LIV) recovers MSC proliferation in senescence and simulated microgravity models, indicating that age-related reductions in mechanical signal delivery within bone marrow may contribute to declining bone mechanoresponse. To answer this question, we developed a 3D bone marrow analog that controls trabecular geometry, marrow mechanics and external stimuli. Validated finite element (FE) models were developed to quantify strain environment within hydrogels during LIV. Bone marrow analogs with gyroid-based trabeculae of bone volume fractions (BV/TV) corresponding to adult (25%) and aged (13%) mice were printed using polylactic acid (PLA). MSCs encapsulated in migration-permissive hydrogels within printed trabeculae showed robust cell populations on both PLA surface and hydrogel within a week. Following 14 days of LIV treatment (1g, 100 Hz, 1 hour/day), type-I collagen and F-actin were quantified for the cells in the hydrogel fraction. While LIV increased all measured outcomes, FE models predicted higher von Mises strains for the 13% BV/TV groups (0.2%) when compared to the 25% BV/TV group (0.1%). Despite increased strains, collagen-I and F-actin measures remained lower in the 13% BV/TV groups when compared to 25% BV/TV counterparts, indicating that cell response to LIV does not depend on hydrogel strains and that bone volume fraction (i.e. available bone surface) directly affects cell behavior in the hydrogel phase independent of the external stimuli. Overall, bone marrow analogs offer a robust and repeatable platform to study bone mechanobiology.

6.
Biomater Adv ; 154: 213588, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634337

RESUMO

Replacement therapy for the salivary gland (SG) remains an unmet clinical need. Xerostomia ("dry mouth") due to hyposalivation can result from injury or disease to the SG, such as salivary acinar death caused by radiation therapy (RT) for head and neck squamous cell carcinoma (HNSCC). Currently, only palliative treatments exist for xerostomia, and many patients endure deteriorated oral health and poor quality of life. Tissue engineering could offer a permanent solution for SG replacement by isolating healthy SG tissues prior to RT, expanding its cells in vitro, and recreating a functional salivary neogland for implantation post-RT. 3D bioprinting methods potentiate spatial cell deposition into defined hydrogel-based architectures, mimicking the thin epithelia developed during the complex branching morphogenesis of SG. By leveraging a microfluidics-based bioprinter with coaxial polymer and crosslinker streams, we fabricated thin, biocompatible, and reproducible hydrogel features that recapitulate the thin epithelia characteristics of SG. This flexible platform enabled two modes of printing: we produced solid hydrogel fibers, with diameters <100 µm, that could be rastered to create larger mm-scale structures. By a second method, we generated hollow tubes with wall thicknesses ranging 45-80 µm, total tube diameters spanning 0.6-2.2 mm, and confirmed tube patency. In both cases, SG cells could be printed within the thin hydrogel features, with preserved phenotype and high viability, even at high density (5.0 × 106 cells/mL). Our work demonstrates hydrogel feature control across multiple length scales, and a new paradigm for addressing SG restoration by creating microscale tissue engineered components.


Assuntos
Bioimpressão , Xerostomia , Humanos , Engenharia Tecidual , Microfluídica , Qualidade de Vida , Hidrogéis , Glândulas Salivares , Xerostomia/terapia
7.
Calcif Tissue Int ; 113(1): 126-142, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37261463

RESUMO

In addition to their well-described functions in cell excitability, voltage-sensitive calcium channels (VSCCs) serve a critical role in calcium (Ca2+)-mediated secretion of pleiotropic paracrine and endocrine factors, including those produced in bone. Influx of Ca2+ through VSCCs activates intracellular signaling pathways to modulate a variety of cellular processes that include cell proliferation, differentiation, and bone adaptation in response to mechanical stimuli. Less well understood is the role of VSCCs in the control of bone and calcium homeostasis mediated through secreted factors. In this review, we discuss the various functions of VSCCs in skeletal cells as regulators of Ca2+ dynamics and detail how these channels might control the release of bioactive factors from bone cells. Because VSCCs are druggable, a better understanding of the multiple functions of these channels in the skeleton offers the opportunity for developing new therapies to enhance and maintain bone and to improve systemic health.


Assuntos
Cálcio , Transdução de Sinais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Osteócitos/metabolismo , Transporte Biológico
8.
Adv Healthc Mater ; 12(14): e2201434, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36461624

RESUMO

Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.


Assuntos
Neoplasias da Próstata , Masculino , Animais , Humanos , Xenoenxertos , Neoplasias da Próstata/metabolismo , Técnicas de Cocultura , Próstata/patologia , Modelos Animais de Doenças , Hidrogéis , Microambiente Tumoral
9.
Biomolecules ; 12(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36551284

RESUMO

Our understanding of how osteocytes, the principal mechanosensors within bone, sense and perceive force remains unclear. Previous work identified "tethering elements" (TEs) spanning the pericellular space of osteocytes and transmitting mechanical information into biochemical signals. While we identified the heparan sulfate proteoglycan perlecan (PLN) as a component of these TEs, PLN must attach to the cell surface to induce biochemical responses. As voltage-sensitive calcium channels (VSCCs) are critical for bone mechanotransduction, we hypothesized that PLN binds the extracellular α2δ1 subunit of VSCCs to couple the bone matrix to the osteocyte membrane. Here, we showed co-localization of PLN and α2δ1 along osteocyte dendritic processes. Additionally, we quantified the molecular interactions between α2δ1 and PLN domains and demonstrated for the first time that α2δ1 strongly associates with PLN via its domain III. Furthermore, α2δ1 is the binding site for the commonly used pain drug, gabapentin (GBP), which is associated with adverse skeletal effects when used chronically. We found that GBP disrupts PLN::α2δ1 binding in vitro, and GBP treatment in vivo results in impaired bone mechanosensation. Our work identified a novel mechanosensory complex within osteocytes composed of PLN and α2δ1, necessary for bone force transmission and sensitive to the drug GBP.


Assuntos
Proteoglicanas de Heparan Sulfato , Mecanotransdução Celular , Proteoglicanas de Heparan Sulfato/metabolismo , Gabapentina/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo
10.
Curr Osteoporos Rep ; 20(6): 365-378, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149592

RESUMO

PURPOSE OF REVIEW: In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS: Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.


Assuntos
Cálcio , Humanos , Gabapentina/farmacologia , Ácido gama-Aminobutírico/uso terapêutico , Ácido gama-Aminobutírico/farmacologia , Homeostase , Pregabalina/uso terapêutico , Pregabalina/farmacologia
11.
Biology (Basel) ; 11(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36138750

RESUMO

The bone marrow tumor microenvironment (BMTE) is a complex network of cells, extracellular matrix, and sequestered signaling factors that initially act as a hostile environment for disseminating tumor cells (DTCs) from the cancerous prostate. Three-dimensional (3D) culture systems offer an opportunity to better model these complex interactions in reactive stroma, providing contextual behaviors for cancer cells, stromal cells, and endothelial cells. Using a new system designed for the triculture of osteoblastic prostate cancer (PCa) cells, stromal cells, and microvascular endothelial cells, we uncovered a context-specific pro-apoptotic effect of endothelial cells of the bone marrow different from those derived from the lung or dermis. The paracrine nature of this effect was demonstrated by observations that conditioned medium from bone marrow endothelial cells, but not from dermal or lung endothelial cells, led to PCa cell death in microtumors grown in 3D BMTE-simulating hydrogels. Analysis of the phosphoproteome by reverse phase protein analysis (RPPA) of PCa cells treated with conditioned media from different endothelial cells identified the differential regulation of pathways involved in proliferation, cell cycle regulation, and apoptosis. The findings from the RPPA were validated by western blotting for representative signaling factors identified, including forkhead box M1 (FOXM1; proliferation factor), pRb (cell cycle regulator), and Smac/DIABLO (pro-apoptosis) among treatment conditions. The 3D model presented here thus presents an accurate model to study the influence of the reactive BMTE, including stromal and endothelial cells, on the adaptive behaviors of cancer cells modeling DTCs at sites of bone metastasis. These findings in 3D culture systems can lead to a better understanding of the real-time interactions among cells present in reactive stroma than is possible using animal models.

12.
Development ; 149(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781329

RESUMO

Cell fate determination is a necessary and tightly regulated process for producing different cell types and structures during development. Cranial neural crest cells (CNCCs) are unique to vertebrate embryos and emerge from the neural plate borders into multiple cell lineages that differentiate into bone, cartilage, neurons and glial cells. We have previously reported that Irf6 genetically interacts with Twist1 during CNCC-derived tissue formation. Here, we have investigated the mechanistic role of Twist1 and Irf6 at early stages of craniofacial development. Our data indicate that TWIST1 is expressed in endocytic vesicles at the apical surface and interacts with ß/δ-catenins during neural tube closure, and Irf6 is involved in defining neural fold borders by restricting AP2α expression. Twist1 suppresses Irf6 and other epithelial genes in CNCCs during the epithelial-to-mesenchymal transition (EMT) process and cell migration. Conversely, a loss of Twist1 leads to a sustained expression of epithelial and cell adhesion markers in migratory CNCCs. Disruption of TWIST1 phosphorylation in vivo leads to epidermal blebbing, edema, neural tube defects and CNCC-derived structural abnormalities. Altogether, this study describes a previously uncharacterized function of mammalian Twist1 and Irf6 in the neural tube and CNCCs, and provides new target genes for Twist1 that are involved in cytoskeletal remodeling.


Assuntos
Crista Neural , Tubo Neural , Animais , Cateninas , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/genética , Crânio/metabolismo , delta Catenina
13.
Matrix Biol ; 111: 95-107, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714875

RESUMO

The extracellular matrix (ECM) is a highly dynamic, well-organized acellular network of tissue-specific biomolecules, that can be divided into structural or core ECM proteins and ECM-associated proteins. The ECM serves as a blueprint for organ development and function and, when structurally altered through mutation, altered expression, or degradation, can lead to debilitating syndromes that often affect one tissue more than another. Cross-referencing the FANTOM5 SSTAR (Semantic catalog of Samples, Transcription initiation And Regulators) and the defined catalog of core matrisome ECM (glyco)proteins, we conducted a comprehensive analysis of 511 different human samples to annotate the context-specific transcription of the individual components of the defined matrisome. Relative log expression normalized SSTAR cap analysis gene expression peak data files were downloaded from the FANTOM5 online database and filtered to exclude all cell lines and diseased tissues. Promoter-level expression values were categorized further into eight core tissue systems and three major ECM categories: proteoglycans, glycoproteins, and collagens. Hierarchical clustering and correlation analyses were conducted to identify complex relationships in promoter-driven gene expression activity. Integration of the core matrisome and curated FANTOM5 SSTAR data creates a unique tool that provides insight into the promoter-level expression of ECM-encoding genes in a tissue- and cell-specific manner. Unbiased clustering of cap analysis gene expression peak data reveals unique ECM signatures within defined tissue systems. Correlation analysis among tissue systems exposes both positive and negative correlation of ECM promoters with varying levels of significance. This tool can be used to provide new insight into the relationships between ECM components and tissues and can inform future research on the ECM in human disease and development. We invite the matrix biology community to continue to explore and discuss this dataset as part of a larger and continuing conversation about the human ECM. An interactive web tool can be found at matrixpromoterome.github.io along with additional resources that can be found at dx.doi.org/10.6084/m9.figshare.19794481 (figures) and https://figshare.com/s/e18ecbc3ae5aaf919b78 (python notebook).


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Fenótipo , Proteoglicanas/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-35393258

RESUMO

OBJECTIVE: The study evaluated use of a multipoint saliva analyzer to assess patient wellness in a contemporary dental practice setting. STUDY DESIGN: Unstimulated saliva from a diverse 104 patient cohort was analyzed using the SillHa Oral Wellness System. The device measures the following 7 analytes present in the patient's oral rinse: cariogenic bacteria, acidity, buffer capacity, blood, leukocytes, protein, and ammonia. Data obtained were compared with validated clinical assessment data independently provided by credentialed dental professionals. RESULTS: Measured leukocyte and protein levels were higher in patients with periodontal disease and/or deep gingival pockets. Patients with a history of cancer and/or diabetes presented with higher ammonia and lower leukocyte levels. Acidity levels were higher in patients using multiple xerogenic medications and lower in patients with a history of sleep apnea. Sex differences showed female patients exhibiting higher acidity, lower buffer capacity, and lower ammonia than male patients. Increasing age is associated with elevated buffer capacity. CONCLUSIONS: Multipoint saliva analyzers such as the one used in this study, along with clinical practice examination and medical history, can provide rapid salivary component analysis that augments treatment planning. A follow-up multisite study would provide the opportunity to test this analyzer in clinical sites with different practice workflows.


Assuntos
Amônia , Doenças Periodontais , Amônia/metabolismo , Bactérias , Feminino , Humanos , Masculino , Saúde Bucal , Saliva/metabolismo
15.
Diagnostics (Basel) ; 12(3)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35328163

RESUMO

Medical imaging devices often use automated processing that creates and displays a self-normalized image. When improperly executed, normalization can misrepresent information or result in an inaccurate analysis. In the case of diagnostic imaging, a false positive in the absence of disease, or a negative finding when disease is present, can produce a detrimental experience for the patient and diminish their health prospects and prognosis. In many clinical settings, a medical technical specialist is trained to operate an imaging device without sufficient background information or understanding of the fundamental theory and processes involved in image creation and signal processing. Here, we describe a user-friendly image processing algorithm that mitigates user bias and allows for true signal to be distinguished from background. For proof-of-principle, we used antibody-targeted molecular imaging of colorectal cancer (CRC) in a mouse model, expressing human MUC1 at tumor sites. Lesion detection was performed using targeted magnetic resonance imaging (MRI) of hyperpolarized silicon particles. Resulting images containing high background and artifacts were then subjected to individualized image post-processing and comparative analysis. Post-acquisition image processing allowed for co-registration of the targeted silicon signal with the anatomical proton magnetic resonance (MR) image. This new methodology allows users to calibrate a set of images, acquired with MRI, and reliably locate CRC tumors in the lower gastrointestinal tract of living mice. The method is expected to be generally useful for distinguishing true signal from background for other cancer types, improving the reliability of diagnostic MRI.

16.
Oral Maxillofac Surg ; 26(4): 613-618, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34981214

RESUMO

PURPOSE: The primary purpose of this study is to identify if there is an underlying genetic predisposition for COVID-related macroglossia and if this susceptibility is higher among individuals of African heritage. Secondary objectives include determining if genetic testing of COVID-infected patients who are intubated and prone could identify patients with higher susceptibility to the development of macroglossia. METHODS: A retrospective chart review was completed for each patient, and prospectively, genetic and histopathologic analyses were completed. Whole-exome sequencing was completed on two patients; immunohistochemistry was completed on the COVID-positive tissue samples. RESULTS: Histopathology of the COVID-positive patient revealed significant peri-lymphocytic infiltrate, which was absent in the COVID-negative patient. Immunohistochemistry confirmed the presence of immune cells. Results from the whole-exome sequencing were inconclusive. CONCLUSION: The findings of this study are consistent with others that have observed a lymphocytic infiltrate in the organs of patients infected with SARS-CoV-2. On histology, IHC highlighted a CD45 + predominance, indicating that a robust immune response is present in the tissues. The pathobiology of this phenomenon and its role in the development and/or persistence of massive macroglossia requires further study.


Assuntos
COVID-19 , Macroglossia , Humanos , COVID-19/genética , SARS-CoV-2/genética , Estudos Retrospectivos , Genômica
17.
Acta Biomater ; 138: 1-20, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34743044

RESUMO

This review explores the evolution of the use of hydrogels for craniofacial soft tissue engineering, ranging in complexity from acellular injectable fillers to fabricated, cell-laden constructs with complex compositions and architectures. Addressing both in situ and ex vivo approaches, tissue restoration secondary to trauma or tumor resection is discussed. Beginning with relatively simple epithelia of oral mucosa and gingiva, then moving to more functional units like vocal cords or soft tissues with multilayer branched structures, such as salivary glands, various approaches are presented toward the design of function-driven architectures, inspired by native tissue organization. Multiple tissue replacement paradigms are presented here, including the application of hydrogels as structural materials and as delivery platforms for cells and/or therapeutics. A practical hierarchy is proposed for hydrogel systems in craniofacial applications, based on their material and cellular complexity, spatial order, and biological cargo(s). This hierarchy reflects the regulatory complexity dictated by the Food and Drug Administration (FDA) in the United States prior to commercialization of these systems for use in humans. The wide array of available biofabrication methods, ranging from simple syringe extrusion of a biomaterial to light-based spatial patterning for complex architectures, is considered within the history of FDA-approved commercial therapies. Lastly, the review assesses the impact of these regulatory pathways on the translational potential of promising pre-clinical technologies for craniofacial applications. STATEMENT OF SIGNIFICANCE: While many commercially available hydrogel-based products are in use for the craniofacial region, most are simple formulations that either are applied topically or injected into tissue for aesthetic purposes. The academic literature previews many exciting applications that harness the versatility of hydrogels for craniofacial soft tissue engineering. One of the most exciting developments in the field is the emergence of advanced biofabrication methods to design complex hydrogel systems that can promote the functional or structural repair of tissues. To date, no clinically available hydrogel-based therapy takes full advantage of current pre-clinical advances. This review surveys the increasing complexity of the current landscape of available clinical therapies and presents a framework for future expanded use of hydrogels with an eye toward translatability and U.S. regulatory approval for craniofacial applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Materiais Biocompatíveis , Humanos
18.
J Bone Oncol ; 31: 100399, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34745857

RESUMO

Renal cell carcinoma (RCC) is the most common malignancy of the kidney, representing 80-90% of renal neoplasms, and is associated with a five-year overall survival rate of approximately 74%. The second most common site of metastasis is bone. As patients are living longer due to new RCC targeting agents and immunotherapy, RCC bone metastases (RCCBM) treatment failure is more prevalent. Bone metastasis formation in RCC is indicative of a more aggressive disease and worse prognosis. Osteolysis is a prominent feature and causes SRE, including pathologic fractures. Bone metastasis from other tumors such as lung, breast, and prostate cancer, are more effectively treated with bisphosphonates and denosumab, thereby decreasing the need for palliative surgical intervention. Resistance to these antiresportives in RCCBM reflects unique cellular and molecular mechanisms in the bone microenvironment that promote progression via inhibition of the anabolic reparative response. Identification of critical mechanisms underlying RCCBM induced anabolic impairment could provide needed insight into how to improve treatment outcomes for patients with RCCBM, with the goals of minimizing progression that necessitates palliative surgery and improving survival.

19.
Front Mol Biosci ; 8: 711602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660692

RESUMO

An urgent need exists to develop large animal models for preclinical testing of new cell therapies designed to replace lost or damaged tissues. Patients receiving irradiation for treatment of head and neck cancers frequently develop xerostomia/dry mouth, a condition that could one day be treated by cell therapy to repopulate functional saliva-producing cells. Using immunosuppression protocols developed for patients receiving whole face transplants, we successfully used immunosuppressed miniswine as a suitable host animal to evaluate the long-term stability, biocompatibility, and fate of matrix-modified hyaluronate (HA) hydrogel/bioscaffold materials containing encapsulated salivary human stem/progenitor cells (hS/PCs). An initial biocompatibility test was conducted in parotids of untreated miniswine. Subsequent experiments using hS/PC-laden hydrogels were performed in animals, beginning an immunosuppression regimen on the day of surgery. Implant sites included the kidney capsule for viability testing and the parotid gland for biointegration time periods up to eight weeks. No transplant rejection was seen in any animal assessed by analysis of the tissues near the site of the implants. First-generation implants containing only cells in hydrogel proved difficult to handle in the surgical suite and were modified to adhere to a porcine small intestinal submucosa (SIS) membrane for improved handling and could be delivered through the da Vinci surgical system. Several different surgical techniques were assessed using the second-generation 3D-salivary tissue (3D-ST) for ease and stability both on the kidney capsule and in the capsule-less parotid gland. For the kidney, sliding the implant under the capsule membrane and quick stitching proved superior to other methods. For the parotid gland, creation of a tissue "pocket" for placement and immediate multilayer tissue closure were well tolerated with minimal tissue damage. Surgical clips were placed as fiduciary markers for tissue harvest. Some implant experiments were conducted with miniswine 90 days post-irradiation when salivation decreased significantly. Sufficient parotid tissue remained to allow implant placement, and animals tolerated immunosuppression. In all experiments, viability of implanted hS/PCs was high with clear signs of both vascular and nervous system integration in the parotid implants. We thus conclude that the immunosuppressed miniswine is a high-value emerging model for testing human implants prior to first-in-human trials.

20.
Front Oncol ; 11: 657701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290978

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer-related deaths among both men and women in the United States. Early detection and surgical removal of high-risk lesions in the colon can prevent disease from developing and spreading. Despite implementation of programs aimed at early detection, screening colonoscopies fail to detect a fraction of potentially aggressive colorectal lesions because of their location or nonobvious morphology. Optical colonoscopies, while highly effective, rely on direct visualization to detect changes on the surface mucosa that are consistent with dysplasia. Recent advances in endoscopy techniques and molecular imaging permit microscale visualization of the colonic mucosa. These technologies can be combined with various molecular probes that recognize and target heterogenous lesion surfaces to achieve early, real-time, and potentially non-invasive, detection of pre-cancerous lesions. The primary goal of this review is to contextualize existing and emergent CRC surface biomarkers and assess each's potential as a candidate marker for early marker-based detection of CRC lesions. CRC markers that we include were stratified by the level of support gleaned from peer-reviewed publications, abstracts, and databases of both CRC and other cancers. The selected biomarkers, accessible on the cell surface and preferably on the luminal surface of the colon tissue, are organized into three categories: (1) established biomarkers (those with considerable data and high confidence), (2) emerging biomarkers (those with increasing research interest but with less supporting data), and (3) novel candidates (those with very recent data, and/or supportive evidence from other tissue systems). We also present an overview of recent advances in imaging techniques useful for visual detection of surface biomarkers, and discuss the ease with which these methods can be combined with microscopic visualization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...