Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(24): 5422-5431, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294871

RESUMO

Antifreeze proteins (AFPs) bind to the ice-water surface and prevent ice growth at temperatures below 0 °C through a Gibbs-Thomson effect. Each adsorbed AFP creates a metastable depression on the surface that locally resists ice growth, until ice engulfs the AFP. We recently predicted the susceptibility to engulfment as a function of AFP size, distance between AFPs, and supercooling [ J. Chem. Phys. 2023, 158, 094501]. For an ensemble of AFPs adsorbed on the ice surface, the most isolated AFPs are the most susceptible, and when an isolated AFP gets engulfed, its former neighbors become more isolated and more susceptible to engulfment. Thus, an initial engulfment event can trigger an avalanche of subsequent engulfment events, leading to a sudden surge of unrestrained ice growth. This work develops a model to predict the supercooling at which the first engulfment event will occur for an ensemble of randomly distributed AFP pinning sites on an ice surface. Specifically, we formulate an inhomogeneous survival probability that accounts for the AFP coverage, the distribution of AFP neighbor distances, the resulting ensemble of engulfment rates, the ice surface area, and the cooling rate. We use the model to predict thermal hysteresis trends and compare with experimental data.


Assuntos
Gelo , alfa-Fetoproteínas , Proteínas Anticongelantes/metabolismo , Transição de Fase , Temperatura
2.
J Chem Phys ; 158(9): 094501, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36889941

RESUMO

Anti-freeze proteins (AFPs) protect organisms at freezing conditions by attaching to the ice surface and arresting its growth. Each adsorbed AFP locally pins the ice surface, resulting in a metastable dimple for which the interfacial forces counteract the driving force for growth. As supercooling increases, these metastable dimples become deeper, until metastability is lost in an engulfment event where the ice irreversibly swallows the AFP. Engulfment resembles nucleation in some respects, and this paper develops a model for the "critical profile" and free energy barrier for the engulfment process. Specifically, we variationally optimize the ice-water interface and estimate the free energy barrier as a function of the supercooling, the AFP footprint size, and the distance to neighboring AFPs on the ice surface. Finally, we use symbolic regression to derive a simple closed-form expression for the free energy barrier as a function of two physically interpretable, dimensionless parameters.


Assuntos
Gelo , alfa-Fetoproteínas , Congelamento , Proteínas Anticongelantes , Água
3.
Phys Chem Chem Phys ; 25(5): 4243-4254, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661750

RESUMO

Understanding the physical and chemical processes occurring in concentrated electrolyte solutions is required to achieve redox flow batteries with high energy density. Highly concentrated electrolyte solutions are often studied in which collective crowded interactions between molecules and ions become predominant. Herein, experimental and computational methods were used to examine non-aqueous electrolyte solutions in two different states of charge as a function of redoxmer concentration. As the latter increases and the ionic association strengthens, the electric conductivity passes through a maximum and the solution increasingly gels, which is seen through a rapid non-linear increase in viscosity. We establish that the structural rigidity of ionic networks is closely connected with this loss of fluidity and show that charging generally yields softer ionic assemblies with weaker attractive forces and improved dynamical properties.

4.
Surg Neurol Int ; 12: 182, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34084610

RESUMO

BACKGROUND: We aimed to assess the efficacy of polyethylene glycol (PEG) dura sealant to achieve watertight closure, prevention of cerebrospinal fluid (CSF) leak and to investigate its possible side effects. METHODS: We searched Medline (through PubMed), Scopus, and the Cochrane Library through December 2019. We included articles demonstrating cranial or spinal procedures with the use of PEG material as a dural sealant. Data on intraoperative watertight closure, CSF leak, and surgical complications were extracted and pooled in a meta-analysis model using RevMan version 5.3 and OpenMeta (Analyst). RESULTS: Pooling the controlled trials showed that PEG resulted in significantly more intraoperative watertight closures than standard care (risk ratio [RR] = 1.44, 95% confidence interval [CI] [1.24, 1.66]). However, the combined effect estimate did not reveal any significant difference between both groups in terms of CSF leaks, the incidence of surgical site infections, and neurological deficits (P = 0.7, 0.45, and 0.92, respectively). On the other hand, pooling both controlled and noncontrolled trials showed significance in terms of leak and neurological complications (RR = 0.0238, 95% CI [0.0102, 0.0373] and RR = 0.035, 95% CI [0.018, 0.052]). Regarding intraoperative watertight closure, the overall effect estimate showed no significant results (RR=0.994, 95% CI [0.986, 1.002]). CONCLUSION: Dura seal material is an acceptable adjuvant for dural closure when the integrity of the dura is questionable. However, marketing it as a factor for the prevention of surgical site infection is not scientifically proved. We suggest that, for neurosurgeons, using the dural sealants are highly recommended for duraplasty, skull base approaches, and in keyhole approaches.

5.
J Phys Chem B ; 124(45): 10226-10236, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33119315

RESUMO

Redoxmers are electrochemically active organic molecules storing charge and energy in electrolyte fluids circulating through redox flow batteries (RFBs). Such molecules typically have solvent-repelling cores and solvent-attracting pendant groups introduced to increase solubility in liquid electrolytes. These two features can facilitate nanoscale aggregation of the redoxmer molecules in crowded solutions. In some cases, this aggregation leads to the emergence of continuous networks of solute molecules in contact, and the solution becomes microscopically heterogeneous. Here, we use small-angle X-ray scattering (SAXS) and molecular dynamics modeling to demonstrate formation of such networks and examine structural factors controlling this self-assembly. We also show that salt ions become excluded from these solute aggregates into small pockets of electrolytes, where these ions strongly associate. This confinement by exclusion is also likely to occur to charged redoxmer molecules in a "sea" of neutral precursors coexisting in the same solution. Here, we demonstrate that the decay lifetime of the confined charged molecules in such solutions can increase several fold compared to dilute solutions. We attribute this behavior to a "microreactor effect" on reverse reactions of the confined species during their decomposition.

6.
Sensors (Basel) ; 20(12)2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32575877

RESUMO

The Routing Protocol for Low power and lossy networks (RPL) has been introduced as the de-facto routing protocol for the Industrial Internet of Things (IIoT). In heavy load scenarios, particular parent nodes are likely prone to congestion, which in turn degrades the network performance, in terms of packet delivery and delay. Moreover, there is no explicit strategy in RPL to prioritize the transmission of different traffic types in heterogeneous 6TiSCH networks, each according to its criticality. In this paper, we address the aforementioned issues by introducing a congestion control and service differentiation strategies to support heterogeneous 6TiSCH networks in IIoT applications. First, we introduce a congestion control mechanism to achieve load balancing under heavy traffic scenarios. The congestion is detected through monitoring and sharing the status of the queue backlog among neighbor nodes. We define a new routing metric that considers the queue occupancy when selecting the new parent node in congestion situations. In addition, we design a multi-queue model to provide prioritized data transmission for critical data over the non-critical ones. Each traffic type is placed in a separate queue and scheduled for transmission based on the assigned queue priority, where critical data are always transmitted first. The performance of the proposed work is evaluated through extensive simulations and compared with existing work to demonstrate its effectiveness. The results show that our proposal achieves improved packet delivery and low queue losses under heavy load scenarios, as well as improved delay performance of critical traffic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...